
Joan Daemen
Vincent Rijmen Note on naming Rijndael

Date: 9/04/2003 Page: 1/2

Note on naming

1. Introduction

After the selection of Rijndael as the AES, it was decided to change the names of some of its
component functions in order to improve the readability of the standard. However, we see that
many recent publications on Rijndael and the AES still use the old names, mainly because the
original submission documents using the old names, are still available on the Internet. In this
note we repeat quickly the new names for the component functions. Additionally, we remind
the reader on the difference between AES and Rijndael and present an overview of the most
important references for Rijndael and the AES.

2. References
[1] Joan Daemen and Vincent Rijmen, AES submission document on Rijndael, June 1998.

[2] Joan Daemen and Vincent Rijmen, AES submission document on Rijndael, Version 2,
September 1999. http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf

[3] FIPS PUB 197, Advanced Encryption Standard (AES), National Institute of Standards
and Technology, U.S. Department of Commerce, November 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[4] Joan Daemen and Vincent Rijmen, The Design of Rijndael, AES - The Advanced
Encryption Standard, Springer-Verlag 2002 (238 pp.)

3. Naming

The names of the component functions of Rijndael have been modified between the
publication of [2] and that of [3]. Table 1 lists the two versions of names. We recommend
using the new names.

Old naming New naming

ByteSub SubBytes

ShiftRow ShiftRows

MixColumn MixColumns

AddRoundKey AddRoundKey

Table 1: Old and new names of the Rijndael component functions

4. Range of key and block lengths in Rijndael and AES

Rijndael and AES differ only in the range of supported values for the block length and cipher
key length.

For Rijndael, the block length and the key length can be independently specified to any
multiple of 32 bits, with a minimum of 128 bits, and a maximum of 256 bits. The support for
block and key lengths 160 and 224 bits was introduced in reference [2].

AES fixes the block length to 128 bits, and supports key lengths of 128, 192 or 256 bits only.

Joan Daemen
Vincent Rijmen Note on naming Rijndael

Date: 9/04/2003 Page: 2/2

5. Referencing

Reference [3] is the US Federal Information Processing Standard defining AES and hence the
definitive reference on AES.

Reference [4] is the definitive reference on Rijndael. It is a book we have written after the
selection of Rijndael as AES and was published in February 2002. It describes all aspects of
Rijndael and is only available on paper.

Reference [1] is the original Rijndael documentation submitted to AES and dates from June
11, 1998. Reference [2] is an improved version dating from September 3, 1999 that
supersedes reference [1]. Both were made available electronically in PDF formats on several
sites. Both references should be used only when referring to the actual historical documents.
Technical or scientific references should be restricted to [3] and [4].

We propose to use the following BibTex entries:

@Book{Daemen:2002:DRA,
 author = "Joan Daemen and Vincent Rijmen",
 title = "The design of {Rijndael}: {AES} --- the {Advanced
 Encryption Standard}",
 publisher = "Spring{\-}er-Ver{\-}lag",
 pages = "238",
 year = "2002",
 ISBN = "3-540-42580-2"
}

@misc{AES-FIPS,
 title = "Specification for the Advanced Encryption Standard (AES)",
 howpublished = "Federal Information Processing Standards Publication 197",
 year = "2001",
 url = " http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf"
}

Authors:

Joan Daemen

Vincent Rijmen

��� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ������ ��� ��
�
�
�

Document version 2, Date: 03/09/99 Page: 1/45

AES Proposal: Rijndael
Joan Daemen, Vincent Rijmen

Joan Daemen
Proton World Int.l

Zweefvliegtuigstraat 10
B-1130 Brussel, Belgium

daemen.j@protonworld.com

Vincent Rijmen
Katholieke Universiteit Leuven, ESAT-COSIC

K. Mercierlaan 94
B-3001 Heverlee, Belgium

vincent.rijmen@esat.kuleuven.ac.be

Table of Contents

1. Introduction 4
1.1 Document history 4

2. Mathematical preliminaries 4
2.1 The field GF(28) 4

2.1.1 Addition 4
2.1.2 Multiplication 5
2.1.3 Multiplication by x 6

2.2 Polynomials with coefficients in GF(28) 6
2.2.1 Multiplication by x 7

3. Design rationale 8

4. Specification 8
4.1 The State, the Cipher Key and the number of rounds 8
4.2 The round transformation 10

4.2.1 The ByteSub transformation 11
4.2.2 The ShiftRow transformation 11
4.2.3 The MixColumn transformation 12
4.2.4 The Round Key addition 13

4.3 Key schedule 14
4.3.1 Key expansion 14
4.3.2 Round Key selection 15

4.4 The cipher 16

5. Implementation aspects 16
5.1 8-bit processor 16
5.2 32-bit processor 17

5.2.1 The Round Transformation 17
5.2.2 Parallelism 18
5.2.3 Hardware suitability 19

5.3 The inverse cipher 19
5.3.1 Inverse of a two-round Rijndael variant 19
5.3.2 Algebraic properties 20
5.3.3 The equivalent inverse cipher structure 20
5.3.4 Implementations of the inverse cipher 21

6. Performance figures 23
6.1 8-bit processors 23

6.1.1 Intel 8051 23

Dorin
Typewritten Text
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

Authors:

Joan Daemen

Vincent Rijmen

��� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ������ ��� ��
�
�
�

Document version 2, Date: 03/09/99 Page: 2/45

6.1.2 Motorola 68HC08 23
6.2 32-bit processors 24

6.2.1 Optimised ANSI C 24
6.2.2 Java 25

7. Motivation for design choices 25
7.1 The reduction polynomial m(x) 25
7.2 The ByteSub S-box 26
7.3 The MixColumn transformation 27

7.3.1 Branch number 27
7.4 The ShiftRow offsets 27
7.5 The key expansion 28
7.6 Number of rounds 28

8. Strength against known attacks 30
8.1 Symmetry properties and weak keys of the DES type 30
8.2 Differential and linear cryptanalysis 30

8.2.1 Differential cryptanalysis 30
8.2.2 Linear cryptanalysis 30
8.2.3 Weight of differential and linear trails 31
8.2.4 Propagation of patterns 31

8.3 Truncated differentials 36
8.4 The Square attack 36

8.4.1 Preliminaries 36
8.4.2 The basic attack 36
8.4.3 Extension by an additional round at the end 37
8.4.4 Extension by an additional round at the beginning 37
8.4.5 Working factor and memory requirements for the attacks 38

8.5 Interpolation attacks 38
8.6 Weak keys as in IDEA 38
8.7 Related-key attacks 39

9. Expected strength 39

10. Security goals 39
10.1 Definitions of security concepts 39

10.1.1 The set of possible ciphers for a given block length and key length 39
10.1.2 K-Security 40
10.1.3 Hermetic block ciphers 40

10.2 Goal 40

11. Advantages and limitations 41
11.1 Advantages 41
11.2 Limitations 41

12. Extensions 42
12.1 Other block and Cipher Key lengths 42
12.2 Another primitive based on the same round transformation 42

13. Other functionality 42
13.1 MAC 42
13.2 Hash function 43
13.3 Synchronous stream cipher 43
13.4 Pseudorandom number generator 43
13.5 Self-synchronising stream cipher 43

14. Suitability for ATM, HDTV, B-ISDN, voice and satellite 44

15. Acknowledgements 44

Authors:

Joan Daemen

Vincent Rijmen

The Rijndael Block CipherThe Rijndael Block CipherThe Rijndael Block CipherThe Rijndael Block Cipher AES Proposal

��������
���
�� �� ����� �������� ����� �/��

16. References 44

17. List of Annexes 45

Table of Figures
Figure 1: Example of State (with Nb = 6) and Cipher Key (with Nk = 4) layout.......................... 9

Figure 2: ByteSub acts on the individual bytes of the State... 11

Figure 3: ShiftRow operates on the rows of the State. .. 12

Figure 4: MixColumn operates on the columns of the State. ... 13

Figure 5: In the key addition the Round Key is bitwise EXORed to the State. 13

Figure 6: Key expansion and Round Key selection for Nb = 6 and Nk = 4. 15

Figure 7: Propagation of activity pattern (in grey) through a single round................................ 32

Figure 8: Propagation of patterns in a single round. .. 33

Figure 9: Illustration of Theorem 1 with Q = 2. ... 34

Figure 10: Illustration of Lemma 1 with one active column in a1. ... 35

Figure 11: Illustration of Theorem 2. .. 35

Figure 12: Complexity of the Square attack applied to Rijndael. ... 38

List of Tables
Table 1: Number of rounds (Nr) as a function of the block and key length. 10

Table 2: Shift offsets for different block lengths... 12

Table 3: Execution time and code size for Rijndael in Intel 8051 assembler. 23

Table 4: Execution time and code size for Rijndael in Motorola 68HC08 Assembler............... 24

Table 5: Number of cycles for the key expansion .. 24

Table 6: Cipher (and inverse) performance ... 25

Table 7: Performance figures for the cipher execution (Java) ... 25

Table 8: Shift offsets in Shiftrow for the alternative block lengths.. 42

Authors:

Joan Daemen

Vincent Rijmen

The Rijndael Block CipherThe Rijndael Block CipherThe Rijndael Block CipherThe Rijndael Block Cipher AES Proposal

��������
���
�� �� ����� �������� ����� �/��

1. Introduction
In this document we describe the cipher Rijndael. First we present the mathematical basis
necessary for understanding the specifications followed by the design rationale and the
description itself. Subsequently, the implementation aspects of the cipher and its inverse are
treated. This is followed by the motivations of all design choices and the treatment of the
resistance against known types of attacks. We give our security claims and goals, the
advantages and limitations of the cipher, ways how it can be extended and how it can be used
for functionality other than block encryption/decryption. We conclude with the
acknowledgements, the references and the list of annexes.

Patent Statement: Rijndael or any of its implementations is not and will not be subject to
patents.

1.1 Document history

This is the second version of the Rijndael documentation. The main difference with the first
version is the correction of a number of errors and inconsistencies, the addition of a motivation
for the number of rounds, the addition of some figures in the section on differential and linear
cryptanalysis, the inclusion of Brian Gladman’s performance figures and the specification of
Rijndael extensions supporting block and key lengths of 160 and 224 bits.

2. Mathematical preliminaries
Several operations in Rijndael are defined at byte level, with bytes representing elements in
the finite field GF(28). Other operations are defined in terms of 4-byte words. In this section we
introduce the basic mathematical concepts needed in the following of the document.

2.1 The field GF(2 8)

The elements of a finite field [LiNi86] can be represented in several different ways. For any
prime power there is a single finite field, hence all representations of GF(28) are isomorphic.
Despite this equivalence, the representation has an impact on the implementation complexity.
We have chosen for the classical polynomial representation.

A byte b, consisting of bits b7 b6 b5 b4 b3 b2 b1 b0, is considered as a polynomial with coefficient
in {0,1}:

b7 x
7 + b6 x

6 + b5 x
5 + b4 x

4 + b3 x
3 + b2 x

2 + b1 x + b0

Example : the byte with hexadecimal value ‘57 ’ (binary 01010111) corresponds with
polynomial

x6 + x4 + x2 + x + 1 .

2.1.1 Addition

In the polynomial representation, the sum of two elements is the polynomial with coefficients
that are given by the sum modulo 2 (i.e., 1 + 1 = 0) of the coefficients of the two terms.

Authors:

Joan Daemen

Vincent Rijmen

��� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ������ ��� ��
�
�
�

��������
���
�� �� ����� �������� ����� �/��

Example: ‘57 ’ + ‘83 ’ = ‘D4’, or with the polynomial notation:

(x6 + x4 + x2 + x + 1) + (x7 + x + 1) = x7 + x6 + x4 + x2 .

In binary notation we have: “01010111 ” + “10000011 ” = “11010100 ”. Clearly, the addition
corresponds with the simple bitwise EXOR (denoted by ⊕) at the byte level.

All necessary conditions are fulfilled to have an Abelian group: internal, associative, neutral
element (‘00 ’), inverse element (every element is its own additive inverse) and commutative.
As every element is its own additive inverse, subtraction and addition are the same.

2.1.2 Multiplication

In the polynomial representation, multiplication in GF(28) corresponds with multiplication of
polynomials modulo an irreducible binary polynomial of degree 8. A polynomial is irreducible if
it has no divisors other than 1 and itself. For Rijndael, this polynomial is called m(x) and given
by

m(x) = x8 + x4 + x3 + x + 1

or ‘11B’ in hexadecimal representation.

Example: ‘57 ’ • ‘83 ’ = ‘C1’, or:

(x6 + x4 + x2 + x + 1) (x7 + x + 1) = x13 + x11 + x9 + x8 + x7 +

 x7 + x5 + x3 + x2 + x +

x6 + x4 + x2 + x + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1 modulo x8 + x4 + x3 + x + 1

= x7 + x6 + 1

Clearly, the result will be a binary polynomial of degree below 8. Unlike for addition, there is no
simple operation at byte level.

The multiplication defined above is associative and there is a neutral element (‘01 ’). For any
binary polynomial b(x) of degree below 8, the extended algorithm of Euclid can be used to
compute polynomials a(x), c(x) such that

b(x)a(x) + m(x)c(x) = 1 .

Hence, a(x) • b(x) mod m(x)= 1 or

b−1(x) = a(x) mod m(x)

Moreover, it holds that a(x) • (b(x) + c(x)) = a(x) • b(x) + a(x) • c(x).

It follows that the set of 256 possible byte values, with the EXOR as addition and the
multiplication defined as above has the structure of the finite field GF(28).

Authors:

Joan Daemen

Vincent Rijmen

��� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ������ ��� ��
�
�
�

��������
���
�� �� ����� �������� ����� �/��

2.1.3 Multiplication by x

If we multiply b(x) by the polynomial x, we have:

b7 x
8 + b6 x

7 + b5 x
6 + b4 x

5 + b3 x
4 + b2 x

3 + b1 x
2 + b0 x

x • b(x) is obtained by reducing the above result modulo m(x). If b7 = 0, this reduction is the
identity operation, If b7 = 1, m(x) must be subtracted (i.e., EXORed). It follows that
multiplication by x (hexadecimal ‘02 ’) can be implemented at byte level as a left shift and a
subsequent conditional bitwise EXOR with ‘1B’. This operation is denoted by b = xtime(a).
In dedicated hardware, xtime takes only 4 EXORs. Multiplication by higher powers of x can
be implemented by repeated application of xtime . By adding intermediate results,
multiplication by any constant can be implemented.

Example: ‘57 ’ • ‘13 ’ = ‘FE’

‘57 ’ • ‘02 ’ = xtime(57) = ‘AE’

‘57 ’ • ‘04 ’ = xtime(AE) = ‘47 ’

‘57 ’ • ‘08 ’ = xtime(47) = ‘8E’

‘57 ’ • ‘10 ’ = xtime(8E) = ‘07 ’

‘57 ’ • ‘13 ’ = ‘57 ’ • (‘01 ’ ⊕ ‘02 ’ ⊕ ‘10 ’) = ‘57 ’ ⊕ ‘AE’ ⊕ ‘07 ’ = ‘FE’

2.2 Polynomials with coefficients in GF(2 8)

Polynomials can be defined with coefficients in GF(28). In this way, a 4-byte vector
corresponds with a polynomial of degree below 4.

Polynomials can be added by simply adding the corresponding coefficients. As the addition in
GF(28) is the bitwise EXOR, the addition of two vectors is a simple bitwise EXOR.

Multiplication is more complicated. Assume we have two polynomials over GF(28):

a(x) = a3 x
3 + a2 x

2 + a1 x + a0 and b(x) = b3 x
3 + b2 x

2 + b1 x + b0.

Their product c(x) = a(x)b(x) is given by

c(x) = c6 x
6 + c5 x

5 + c4 x
4 + c3 x

3 + c2 x
2 + c1 x + c0 with

c0 = a0•b0 c4 = a3•b1 ⊕ a2•b2 ⊕ a1•b3

c1 = a1•b0 ⊕ a0•b1 c5 = a3•b2 ⊕ a2•b3

c2 = a2•b0 ⊕ a1•b1 ⊕ a0•b2 c6 = a3•b3

c3 = a3•b0 ⊕ a2•b1 ⊕ a1•b2 ⊕ a0•b3

��������

	�
�

����

������� ������

��� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ������ ��� ��
�
�
�

��������
���
�� �� ����� �������� ����� �/��

Clearly, c(x) can no longer be represented by a 4-byte vector. By reducing c(x) modulo a
polynomial of degree 4, the result can be reduced to a polynomial of degree below 4. In
Rijndael, this is done with the polynomial M(x) = x4 + 1. As

xi mod x4 + 1 = xi mod 4 ,

the modular product of a(x) and b(x), denoted by d(x) = a(x) ⊗ b(x) is given by

d(x) = d3 x
3 + d2 x

2 + d1 x + d0 with

d0 = a0•b0 ⊕ a3•b1 ⊕ a2•b2 ⊕ a1•b3

d1 = a1•b0 ⊕ a0•b1 ⊕ a3•b2 ⊕ a2•b3

d2 = a2•b0 ⊕ a1•b1 ⊕ a0•b2 ⊕ a3•b3

d3 = a3•b0 ⊕ a2•b1 ⊕ a1•b2 ⊕ a0•b3

The operation consisting of multiplication by a fixed polynomial a(x) can be written as matrix
multiplication where the matrix is a circulant matrix. We have

d

d

d

d

a a a a

a a a a

a a a a

a a a a

b

b

b

b

0

1

2

3

0 3 2 1

1 0 3 2

2 1 0 3

3 2 1 0

0

1

2

3



















=





































Note: x4 + 1 is not an irreducible polynomial over GF(28), hence multiplication by a fixed
polynomial is not necessarily invertible. In the Rijndael cipher we have chosen a fixed
polynomial that does have an inverse.

2.2.1 Multiplication by x

If we multiply b(x) by the polynomial x, we have:

b3 x
4 + b2 x

3 + b1 x
2 + b0 x

x ⊗ b(x) is obtained by reducing the above result modulo 1 + x4. This gives

b2 x
3 + b1 x

2 + b0 x + b3

The multiplication by x is equivalent to multiplication by a matrix as above with all ai =‘00’
except a1 =‘01’. Let c(x) = x ⊗b(x). We have:

c

c

c

c

b

b

b

b

0

1

2

3

0

1

2

3

00 00 00 01

01 00 00 00

00 01 00 00

00 00 01 00



















=





































Hence, multiplication by x, or powers of x, corresponds to a cyclic shift of the bytes inside the
vector.

��������

	�
�

����

������� ������

��� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ������ ��� ��
�
�
�

Document version 2, Date: 03/09/99 Page: 8/45

3. Design rationale
The three criteria taken into account in the design of Rijndael are the following:

• Resistance against all known attacks;

• Speed and code compactness on a wide range of platforms;

• Design simplicity.

In most ciphers, the round transformation has the Feistel Structure. In this structure typically
part of the bits of the intermediate State are simply transposed unchanged to another position.
The round transformation of Rijndael does not have the Feistel structure. Instead, the round
transformation is composed of three distinct invertible uniform transformations, called layers.
By “uniform”, we mean that every bit of the State is treated in a similar way.

The specific choices for the different layers are for a large part based on the application of the
Wide Trail Strategy [Da95] (see Annex), a design method to provide resistance against linear
and differential cryptanalysis (see Section 8.2). In the Wide Trail Strategy, every layer has its
own function:

The linear mixing layer : guarantees high diffusion over multiple rounds.

The non-linear layer : parallel application of S-boxes that have optimum worst-case
nonlinearity properties.

The key addition layer : A simple EXOR of the Round Key to the intermediate State.

Before the first round, a key addition layer is applied. The motivation for this initial key addition
is the following. Any layer after the last key addition in the cipher (or before the first in the
context of known-plaintext attacks) can be simply peeled off without knowledge of the key and
therefore does not contribute to the security of the cipher. (e.g., the initial and final permutation
in the DES). Initial or terminal key addition is applied in several designs, e.g., IDEA, SAFER
and Blowfish.

In order to make the cipher and its inverse more similar in structure, the linear mixing layer of
the last round is different from the mixing layer in the other rounds. It can be shown that this
does not improve or reduce the security of the cipher in any way. This is similar to the absence
of the swap operation in the last round of the DES.

4. Specification
Rijndael is an iterated block cipher with a variable block length and a variable key length. The
block length and the key length can be independently specified to 128, 192 or 256 bits.

Note: this section is intended to explain the cipher structure and not as an implementation
guideline. For implementation aspects, we refer to Section 5.

4.1 The State, the Cipher Key and the number of rounds

The different transformations operate on the intermediate result, called the State:

Definition: the intermediate cipher result is called the State.

The State can be pictured as a rectangular array of bytes. This array has four rows, the
number of columns is denoted by Nb and is equal to the block length divided by 32.

Dorin
Highlight

Dorin
Highlight

Dorin
Highlight

Dorin
Highlight

Dorin
Highlight

Dorin
Highlight

Dorin
Highlight

Authors:

Joan Daemen

Vincent Rijmen

The Rijndael Block CipherThe Rijndael Block CipherThe Rijndael Block CipherThe Rijndael Block Cipher AES Proposal

��������
���
�� �� ����� �������� ����� �/��

The Cipher Key is similarly pictured as a rectangular array with four rows. The number of
columns of the Cipher Key is denoted by Nk and is equal to the key length divided by 32.

These representations are illustrated in Figure 1.

In some instances, these blocks are also considered as one-dimensional arrays of 4-byte
vectors, where each vector consists of the corresponding column in the rectangular array
representation. These arrays hence have lengths of 4, 6 or 8 respectively and indices in the
ranges 0..3, 0..5 or 0..7. 4-byte vectors will sometimes be referred to as words.

Where it is necessary to specify the four individual bytes within a 4-byte vector or word the
notation (a, b, c, d) will be used where a, b, c and d are the bytes at positions 0, 1, 2 and 3
respectively within the column, vector or word being considered.

k3,0

k2,0

k1,0

k0,0

k3,1

k2,1

k1,1

k0,1

k3,2

k2,2

k1,2

k0,2

k3,3

k2,3

k1,3

k0,3

a 3,0

a 2,0

a 1,0

a 0,0

a 3,1

a 2,1

a 1,1

a 0,1

a 3,2

a 2,2

a 1,2

a 0,2

a 3,3

a 2,3

a 1,3

a 0,3

a 3,4

a 2,4

a 1,4

a 0,4

a 3,5

a 2,5

a 1,5

a 0,5

Figure 1: Example of State (with Nb = 6) and Cipher Key (with Nk = 4) layout.

The input and output used by Rijndael at its external interface are considered to be one-
dimensional arrays of 8-bit bytes numbered upwards from 0 to the 4* Nb−1. These blocks
hence have lengths of 16, 24 or 32 bytes and array indices in the ranges 0..15, 0..23 or 0..31.
The Cipher Key is considered to be a one-dimensional arrays of 8-bit bytes numbered upwards
from 0 to the 4* Nk−1. These blocks hence have lengths of 16, 24 or 32 bytes and array
indices in the ranges 0..15, 0..23 or 0..31.

The cipher input bytes (the “plaintext” if the mode of use is ECB encryption) are mapped onto
the state bytes in the order a0,0, a1,0, a2,0, a3,0, a0,1, a1,1, a2,1, a3,1, a4,1 ... , and the bytes of the
Cipher Key are mapped onto the array in the order k0,0, k1,0, k2,0, k3,0, k0,1, k1,1, k2,1, k3,1, k4,1 ... At
the end of the cipher operation, the cipher output is extracted from the state by taking the state
bytes in the same order.

Hence if the one-dimensional index of a byte within a block is n and the two dimensional index
is (i ,j), we have:

4modni = ;  4/nj = ; jin *4+=

Moreover, the index i is also the byte number within a 4-byte vector or word and j is the index
for the vector or word within the enclosing block.

The number of rounds is denoted by Nr and depends on the values Nb and Nk. It is given in
Table 1.

Dorin
Highlight

Dorin
Polygon

Dorin
Highlight

Dorin
Highlight

��������

	�
�

����

������� ������

��� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ������ ��� ��
�
�
�

��������
���
�� �� ����� �������� ����� ��/��

Nr Nb = 4 Nb = 6 Nb = 8

Nk = 4 10 12 14

Nk = 6 12 12 14

Nk = 8 14 14 14

Table 1: Number of rounds (Nr) as a function of the block and key length.

4.2 The round transformation

The round transformation is composed of four different transformations. In pseudo C notation
we have:

Round(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey);
}

The final round of the cipher is slightly different. It is defined by:
FinalRound(State,RoundKey)
{
ByteSub(State) ;
ShiftRow(State) ;
AddRoundKey(State,RoundKey);
}

In this notation, the “functions” (Round, ByteSub , ShiftRow , …) operate on arrays to which
pointers (State , RoundKey) are provided.

It can be seen that the final round is equal to the round with the MixColumn step removed.

The component transformations are specified in the following subsections.

Dorin
Polygon

Dorin
Polygon

Dorin
Polygon

��������

	�
�

����

������� ������

��� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ������ ��� ��
�
�
�

Document version 2, Date: 03/09/99 Page: 11/45

4.2.1 The ByteSub transformation

The ByteSub Transformation is a non-linear byte substitution, operating on each of the State
bytes independently. The substitution table (or S-box) is invertible and is constructed by the
composition of two transformations:

1. First, taking the multiplicative inverse in GF(28), with the representation defined in
Section 2.1. ‘00 ’ is mapped onto itself.

2. Then, applying an affine (over GF(2)) transformation defined by:

y

y

y

y

y

y

y

y

x

x

x

x

x

x

x

x

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

































=

































































+

































1

1

0

0

0

1

1

0

The application of the described S-box to all bytes of the State is denoted by:

ByteSub(State) .

Figure 2 illustrates the effect of the ByteSub transformation on the State.

b 3,0

b 2,0

b 1,0

b 0,0

b 3,1

b 2,1

b 1,1

b 0,1

b 3,2

b 2,2

b 1,2

b 0,2

b 3,3

b 2,3

b 1,3

b 0,3

b 3,4

b 2,4

b 1,4

b 0,4

b 3,5

b 2,5

b 1,5

b 0,5

a 3,0

a 2,0

a 1,0

a 0,0

a 3,1

a 2,1

a 1,1

a 0,1

a 3,2

a 2,2

a 1,2

a 0,2

a 3,3

a 2,3

a 1,3

a 0,3

a 3,4

a 2,4

a 1,4

a 0,4

a 3,5

a 2,5

a 1,5

a 0,5

a i,j b i,j

S-box

Figure 2: ByteSub acts on the individual bytes of the State.

The inverse of ByteSub is the byte substitution where the inverse table is applied. This is
obtained by the inverse of the affine mapping followed by taking the multiplicative inverse in
GF(28).

4.2.2 The ShiftRow transformation

In ShiftRow, the rows of the State are cyclically shifted over different offsets. Row 0 is not
shifted, Row 1 is shifted over C1 bytes, row 2 over C2 bytes and row 3 over C3 bytes.

The shift offsets C1, C2 and C3 depend on the block length Nb. The different values are
specified in Table 2.

Dorin
Highlight

Dorin
Highlight

Dorin
Highlight

Dorin
Highlight

Dorin
Highlight

��������

	�
�

����

������� ������

��� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ������ ��� ��
�
�
�

Document version 2, Date: 03/09/99 Page: 12/45

Nb C1 C2 C3

4 1 2 3

6 1 2 3

8 1 3 4

Table 2: Shift offsets for different block lengths.

The operation of shifting the rows of the State over the specified offsets is denoted by:

ShiftRow(State) .

 Figure 3 illustrates the effect of the ShiftRow transformation on the State.

w

d

j

m

x

e

k

n

y

f

l

o

z

...

p

...

...

...

z

f

k

m

...

a

l

n

b

...

o

w

c

p

x

d

i

...

y

e

jh

w

no shift

 cyclic shift by C1 (1)

cyclic shift by C2 (2)

 cyclic shift by C3 (3)

Figure 3: ShiftRow operates on the rows of the State.

The inverse of ShiftRow is a cyclic shift of the 3 bottom rows over Nb-C1 , Nb-C2 and Nb-C3
bytes respectively so that the byte at position j in row i moves to position (j + Nb-Ci) mod Nb.

4.2.3 The MixColumn transformation

In MixColumn, the columns of the State are considered as polynomials over GF(28) and
multiplied modulo x4 + 1 with a fixed polynomial c(x), given by

c(x) = ‘03 ’ x3 + ‘01 ’ x2 + ‘01 ’ x + ‘02 ’ .

This polynomial is coprime to x4 + 1 and therefore invertible. As described in Section 2.2, this
can be written as a matrix multiplication. Let b(x) = c(x) ⊗ a(x),

b

b

b

b

a

a

a

a

0

1

2

3

0

1

2

3

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02



















=





































The application of this operation on all columns of the State is denoted by

MixColumn(State) .

Figure 4 illustrates the effect of the MixColumn transformation on the State.

Dorin
Highlight

��������

	�
�

����

������� ������

��� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ������ ��� ��
�
�
�

Document version 2, Date: 03/09/99 Page: 13/45

a 3,0

a 2,0

a 1,0

a 0,0

a 3,1

a 2,1

a 1,1

a 0,1

a 3,2

a 2,2

a 1,2

a 0,2

a 3,3

a 2,3

a 1,3

a 0,3

a 3,4

a 2,4

a 1,4

a 0,4

a 3,5

a 2,5

a 1,5

a 0,5

a 0,j

a 1,j

a 2,j

a 3,j

b 3,0

b 2,0

b 1,0

b 0,0

b 3,1

b 2,1

b 1,1

b 0,1

b 3,2

b 2,2

b 1,2

b 0,2

b 3,3

b 2,3

b 1,3

b 0,3

b 3,4

b 2,4

b 1,4

b 0,4

b 3,5

b 2,5

b 1,5

b 0,5

b 0,j

b 1,j

b 2,j

b 3,j

⊗ c(x)

Figure 4: MixColumn operates on the columns of the State.

The inverse of MixColumn is similar to MixColumn. Every column is transformed by multiplying
it with a specific multiplication polynomial d(x), defined by

(‘03 ’ x3 + ‘01 ’ x2 + ‘01 ’ x + ‘02 ’) ⊗ d(x) = ‘01 ’ .

It is given by:

d(x) = ‘0B’ x3 + ‘0D’ x2 + ‘09 ’ x + ‘0E’ .

4.2.4 The Round Key addition

In this operation, a Round Key is applied to the State by a simple bitwise EXOR. The Round
Key is derived from the Cipher Key by means of the key schedule. The Round Key length is
equal to the block length Nb.

The transformation that consists of EXORing a Round Key to the State is denoted by:

AddRoundKey(State,RoundKey) .

This transformation is illustrated in Figure 5.

a3,0

a2,0

a1,0

a0,0

a 3,1

a 2,1

a 1,1

a 0,1

a 3,2

a 2,2

a 1,2

a 0,2

a3,3

a2,3

a1,3

a0,3

a 3,4

a 2,4

a 1,4

a 0,4

a3,5

a2,5

a1,5

a0,5

k3,0

k2,0

k1,0

k0,0

k3,1

k2,1

k1,1

k0,1

k3,2

k2,2

k1,2

k0,2

k3,3

k2,3

k1,3

k0,3

k3,4

k2,4

k1,4

k0,4

k3,5

k2,5

k1,5

k0,5

b 3,0

b 2,0

b 1,0

b 0,0

b3,1

b2,1

b1,1

b0,1

b 3,2

b 2,2

b 1,2

b 0,2

b3,3

b2,3

b1,3

b0,3

b 3,4

b 2,4

b 1,4

b 0,4

b 3,5

b 2,5

b 1,5

b 0,5

⊕⊕⊕⊕ =

Figure 5: In the key addition the Round Key is bitwise EXORed to the State.

AddRoundKey is its own inverse.

Dorin
Highlight

��������

	�
�

����

������� ������

��� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ��������� ����	
�� ��
�� ������ ��� ��
�
�
�

Document version 2, Date: 03/09/99 Page: 14/45

4.3 Key schedule

The Round Keys are derived from the Cipher Key by means of the key schedule. This consists
of two components: the Key Expansion and the Round Key Selection. The basic principle is
the following:

• The total number of Round Key bits is equal to the block length multiplied by the
number of rounds plus 1. (e.g., for a block length of 128 bits and 10 rounds, 1408
Round Key bits are needed).

• The Cipher Key is expanded into an Expanded Key.

• Round Keys are taken from this Expanded Key in the following way: the first Round
Key consists of the first Nb words, the second one of the following Nb words, and so
on.

4.3.1 Key expansion

The Expanded Key is a linear array of 4-byte words and is denoted by W[Nb*(Nr+1)]. The
first Nk words contain the Cipher Key. All other words are defined recursively in terms of words
with smaller indices. The key expansion function depends on the value of Nk: there is a
version for Nk equal to or below 6, and a version for Nk above 6.

For Nk ≤ 6, we have:
KeyExpansion(byte Key[4*Nk] word W[Nb*(Nr+1)])
{

for(i = 0; i < Nk; i++)
W[i] = (Key[4*i],Key[4*i+1],Key[4*i+2],Key[4*i+3]);

for(i = Nk; i < Nb * (Nr + 1); i++)
{

temp = W[i - 1];
if (i % Nk == 0)

temp = SubByte(RotByte(temp)) ^ Rcon[i / Nk];
W[i] = W[i - Nk] ^ temp;

}
}

In this description, SubByte(W) is a function that returns a 4-byte word in which each byte is
the result of applying the Rijndael S-box to the byte at the corresponding position in the input
word. The function RotByte(W) returns a word in which the bytes are a cyclic permutation of
those in its input such that the input word (a,b,c,d) produces the output word (b,c,d,a).

It can be seen that the first Nk words are filled with the Cipher Key. Every following word W[i]
is equal to the EXOR of the previous word W[i-1] and the word Nk positions earlier W[i-Nk].
For words in positions that are a multiple of Nk, a transformation is applied to W[i-1] prior to
the EXOR and a round constant is EXORed. This transformation consists of a cyclic shift of
the bytes in a word (RotByte) , followed by the application of a table lookup to all four bytes
of the word (SubByte).

	Introduction
	Document history

	Mathematical Preliminaries
	The field GF(2^8)
	Addition
	Multiplication
	Multiplication by x

	Polynomials with coefficients in GF(2^8)
	Multiplication by x

	Design rationale
	Specification
	The State, the Cipher Key and the number of rounds
	The round transformation
	The ByteSub transformation
	The ShiftRow transformation
	The MixColumn transformation
	The Round Key addition

	Key schedule
	Key expansion
	Round Key selection

	The cipher

	Implementation aspects
	8-bit processor
	32-bit processor
	The Round Transformation
	Parallelism
	Hardware suitability

	The inverse cipher
	Inverse of a two-round Rijndael variant
	Algebraic properties
	The equivalent inverse cipher structure
	Implementations of the inverse cipher

	Performance Figures
	8-bit processors
	Intel 8051
	Motorola 68HC08

	32-bit processors
	Optimised ANSI C
	Java

	Motivation for design choices
	The reduction polynomial m(x)
	The ByteSub S-box
	The MixColumn transformation
	Branch Number

	The ShiftRow offsets
	The key expansion
	Number of rounds

	Strength against known attacks
	Symmetry properties and weak keys of the DES type
	Differential and linear cryptanalysis
	Differential cryptanalysis
	Linear cryptanalysis
	Weight of differential and linear trails
	Propagation of patterns

	Truncated differentials
	The Square attack
	Preliminaries
	The basic attack
	Extension by an additional round at the end
	Extension by an additional round at the beginning
	Working factor and memory requirements for the attacks

	Interpolation attacks
	Weak keys as in IDEA
	Related-key attacks

	Expected strength
	Security goals
	Definitions of security concepts
	The set of possible ciphers for a given block length and key length
	K-Security
	Hermetic block ciphers

	Goal

	Advantages and limitations
	Advantages
	Limitations

	Extensions
	Other block and Cipher Key lengths
	Another primitive based on the same round transformation

	Other functionality
	MAC
	Hash function
	Synchronous stream cipher
	Pseudorandom number generator
	Self-synchronising stream cipher

	Suitability for ATM, HDTV, B-ISDN, voice and satellite
	Acknowledgements
	References
	List of Annexes
	Table of Figures
	Figure 1: Example of State (with Nb = 6) and Cipher Key (with Nk = 4) layout
	Figure 2: ByteSub acts on the individual bytes of the State
	Figure 3: ShiftRow operates on the rows of the State
	Figure 4: MixColumn operates on the columns of the State
	Figure 5: In the key addition the Round Key is bitwise EXORed to the State
	Figure 6: Key expansion and Round Key selection for Nb = 6 and Nk = 4
	Figure 7: Propagation of activity pattern (in grey) through a single round
	Figure 8: Propagation of patterns in a single round
	Figure 9: Illustration of Theorem 1 with Q = 2
	Figure 10: Illustration of Lemma 1 with one active column in a1
	Figure 11 : Ilustration of Theorem 2
	Figure 12: Complexity of the Square attack applied to Rijndael

	List of Tables
	Table 1: Number of rounds (Nr) as as function of the block and key length
	Table 2: Shift offsets for different block lengths
	Table 3: Execution time and code size for Rijndael in Intel 8051 assembler
	Table 4: Execution time and code size for Rijndael in Motorola 68HC08 Assembler
	Table 5: Number of cycles for the key expansion
	Table 6: Cipher (and inverse) performance
	Table 7: Performance figures for the cipher execution (Java)
	Table 8: Shift offsets in Shiftrow for the alternative block lengths

