

Indexat la: Fişa suspiciunii de plagiat / Sheet of plagiarism’s suspicion
49/06

Opera suspicionată (OS) Opera autentică (OA)
Suspicious work Authentic work

OS MANG, E., MANG, I. An FPGA-based implementation of the key transformation procedure
in the MARS algorithm. Journal of Computer Science and Control Systems. 3(1), 2010,
119-122.

OA * * *, MARS Encryption, Disponibil la: http :// www . tropsoft . com / strongenc / mars . htm.

Incidenţa minimă a suspiciunii / Minimum incidence of suspicion
p.119:01s – p.119:04s p.02:33 – p.02:35
p.119:19s – p.119:31s p.02:35 – p.02:45
p.119:42d - p.119:47d p.02:45 – p.02:47

Fişa întocmită pentru includerea suspiciunii în Indexul Operelor Plagiate în România de la
www.plagiate.ro

An FPGA-based implementation of the key transformation

procedure in the MARS algorithm

MANG Erica, MANG Ioan

University of Oradea, Romania,

Department of Computer Science, Faculty of Faculty of Electrical Engineering and Information Technology ,

Universitatii St.1, 410087 Oradea, E-Mail1: emang@dec-it.eu, imang@decnet.ro

Abstract – MARS is a block cipher designed by IBM as

a candidate algorithm for the Advanced Encryption

Standard (AES). It has been selected as one of the five

finalists in the AES competition. It was designed to

meet and exceed the requirements for a standard for

shared-key encryption in the next few decades. The

main theme behind the design of MARS is to get the

best security/performance tradeoff by utilizing the

strongest tools and techniques available today for

designing block ciphers. As a result, MARS provides a

very high level of security, combined with much better

performance than other existing ciphers. In this paper

we present a hardware implementation of key

expansion procedure using VHDL from Xilinx

Software package on FPGA board.

Keywords: AES, MARS, key expansion, cryptography,

FSM

I. INTRODUCTION

MARS has a very high level of security and is much

more efficient than many older algorithms. The

algorithm is resistant to all known shortcut attacks. Its

design takes advantage of the powerful capabilities of

modern computers to allow a much higher level of

performance than can be obtained from less optimized

algorithms such as DES. MARS is unique in that it

combines virtually every design technique known to

cryptographers in one algorithm. But it does so in a way

that is easy to analyze so that the properties of the

algorithm are more completely understood, decreasing

the probability that any loopholes exist which might

weaken the algorithm.

MARS is a shared-key block cipher, with a block

size of 128 bits and a variable key size, ranging from

128 to over 400 bits. The MARS cipher uses a variety of

operations on 32-b it words; it combines exclusive-ors,

additions, subtractions (used to “mix together” data

values and key values), table look-ups (MARS uses a

single table of 512 32-bit words, called the S-box.

Somet imes the S-box is viewed as two tables, each of

256 entries), multip licat ions (there are used “native

multip licat ions” modulo 232, in conjunction with data-

dependent rotations, to obtain very high security), and

both fixed and data-dependent rotations (can be

performed quickly in software and hardware and very

effective against linear and differential cryptanalysis)

[4]. MARS is designed to take advantage of the

powerful operations supported in today’s computers,

resulting in a much improved security/performance

tradeoff over existing ciphers.

MARS is symmetric of encryption and decryption .

MARS is design to be as secure against chosen

ciphertext attacks as against chosen plaintext attacks.

This dictates making the cipher very symmetric, so the

last half of the rounds are almost a “mirror image” of the

first half.

MARS is design to work with 32 b it words At the

current state of the technology, this choice provides a

good tradeoff between the ability to run the algorithm on

computers that are available today, and the ability to

take advantage of larger word-size in future

architectures.

MARS used Type-3 Feistel network. Since MARS

has a block length of 128 b its and word-size of 32 bits, it

follows that each block consists of four words. Among

the various network-structures that are capable of

handling four words in a block, it seems that a type-3

Feistel network provides the best tradeoff between

speed, strength and suitability for analysis. A type-3

Feistel network consists of many rounds, where in each

round one data word (and a few key words) is used to

modify all the other data words. Compared with a type-1

Feistel network (where in each round one data word is

used to modify one other data word), this construct

provides much better diffusion properties with only a

slightly added cost. Hence, fewer rounds can be used to

achieve the same strength. Additionally, a type-3 Feistel

network has advantages over structures in which several

data words are used “at once” to modify other data

words, in that these structures are typically much harder

to analyze (and hence, much more prone to design

errors). The reason is that in such structures the analysis

must take into account all the possible combinations of

values for the input data words, which quickly leads to

unmanageable complexity.

The MARS cipher consists of a mixture of two very

different structures, so that an attack that works against

one portion of the algorithm wouldn't be able to affect

the other. This mixed structure is likely to provide better

resistance against new, as yet undiscovered attacks that

might be used in the future.

Volume 3, Number 1, 2010

119

Dorin
Polygon

Dorin
Polygon

Dorin
Polygon

II. THE MARS ALGORITHM

MARS takes as input (and produces as output) four

32-bit data words. The cipher itself is word -oriented, in

that all the internal operations are performed on 32-b it

words, and hence the internal structure is endian-neutral

(i.e ., the same code works on both little-endian and big-

endian machines). When the input (or output) of the

cipher is a byte stream, we use little endian byte

ordering to interpret each four bytes as one 32-b it word.

The general structure of the cipher is depicted in

Figure 1 [4]. The cipher consists of a “cryptographic

core” of keyed transformation, which is wrapped with

two layers providing rapid key avalanche. The first

phase provides rapid mixing and key avalanche, to

frustrate chosen-plaintext at-tacks, and to make it harder

to “strip out” rounds of the cryptographic core in linear

and differential attacks. It consists of addition of key

words to the data words, followed by eight rounds of S-

box based, unkeyed type-3 Feistel mixing (in “forward

mode”). The second phase is the “cryptographic core” of

the cipher, consisting of sixteen rounds of keyed type-3

Feistel transformat ion. To ensure that encryption and

decryption have the same strength, we perform the first

eight rounds in “forward mode” while the last eight

rounds are performed in “backwards mode”. The last

phase again provides rapid mixing and key avalanche,

this time to protect against chosen-ciphertext attacks.

This phase is essentially the inverse of the first phase,

consisting of eight rounds of the same type-3 Feistel

mixing as in the first phase (except in “backwards

mode”), fo llowed by subtraction of key words from the

data words. MARS is IBM submission to AES. Below

we describe the cipher in details. In this description we

use the following notations: is an array of 4 32-bit data

words [3]. Initially D contains the plaintext words, and

at the end of the encryption process it contains the

ciphertext words.

III. KEY EXPANSION PROCEDURE

The key expansion procedure expands a given key

array k [], consisting of n 32-b it words (where n is any

number between 4 and 14) into an array K [] of 40

words. The original key is not required to have any

structure (in particular, the key does not include any

parity bits). In addition, the key expansion procedure

also guarantees that the key words that are used for

multip licat ion in the encryption procedure have the

following properties: (a) The two lowest bits in a key

word that is used for multip licat ion are set to 1; (b) None

of these key words contains either ten consecutive 0’s or

ten consecutive 1’s .

The MARS key expansion procedure expands the

user-supplied key ranging from 4 to 14 words into a 40-

word key for use in the encryption/decryption operation.

The key expansion procedure consists of three steps:

1. the original key material is copied into a temporary

table T[] of 15 words, followed by the number of

words n, and 0’s.

T[0…n -1] = k[0…n-1], T[n] = n; T[n+1…14] = 0

2. the following process is repeated four times, where

each iteration computes the next ten words of the

expanded key:

a. The array T[] is transformed using the following

linear formula:

for i=0,…,14, T[i]=T[i]((T[i-7 mod 15]T[i-2

mod 15]) <<< 3)(4i+j)

where j is the iteration number;

b. the array T[] is stired using four rounds of type-

1 Feistel network. Specifically, the operation is

repeted four times

T[i]=(T[i] + S[low 9 b its of T[i-1 mod 15]])

<<< 9, i = 0,1,…,14

c. 10 of the words in T[] are taken and reordered
into the next ten words of the expanded key

array, K[]. Th is is done by setting

K[10j + i] = T[4i mod 15], i = 0,1,…, 9

where j is the iteration number

3. Finally, the sixteen words which are used in the

cipher for mult iplication (K[5],K[7],…,K[35]) are

modified to have the two properties from above.

Each of th is words is processed as follows:

a. the two lowest bits of K[i] are recorded by

setting j = K[i]3, and then considered the

word with these 2 bits set to 1, w=K[i]3

b. a mask M of the bits in w is constructed, which

belongs to asequence of 10 or more consecutive

0’s or 1’s. Namely, Ml if and only if wl belongs

to a sequence of ten consecutive 0’s or 1’s.

Then we reset to 0 the 1’s in M which

correspond to the “end-points of runs of 0’s or

1’s in w”, and also the two lowest bits and the

highest bit in M. More p recisely, the i’th bit of

M is reset to 0 if i<2, i=31, or if the i’th bit of w

differs from either the (i+1)’th or the (i-1)’th

bits.

c. Next a fixed four-word table B is used to “fix

w”, where the four entries in B are chosen so
 Figure 1. High-level structure of the chiper

 +

 +

 +

 +

 -

 -

 -

 -

plaintext D[3] D[2] D[1] D[0]

chiphertext D’[3] D’[2] D’[1] D[0]

key

addition

8 rounds of
unkeyed
forward
mixing

8 rounds of

keyed fo r-

ward t rans f.

8 rounds

of keyed

backwards

trans f.
8 rounds
of unkeyed
backwards

mixing
key

subst racti on

backwards

mixing

fo rward

mixing

“crypt og ra-

phi c co re”

Journal of Computer Science and Control Systems

120

that they (and their cyclic shifts) do not contain

any seven consecutive 0’s or ten consecutive

1’s. The 2 recorded bits j (from Step (a)) are

used to select an entry from B, and the lowest

five bits of K[i-1] to rotate this entry, p =

B[j]<<<(lowest 5 bits of K[i-1]).

d. Finally, we xor the pattern p into w under the

control of the mask M, and store the result in

K[i]: K[i] = w(pM). Since the lowest 2 bits

of M are 0’s, then the lowest 2 bits of K[i] will

be 1’s . Also, the choice of B guarantees that

K[i] will meet not have a sequence of ten

consecutive 0’s or 1’s.

The key expansion procedure guarantees that the key

words which are used for multip lication do not have any

obvious weaknesses. This procedure keeps these words

“random”, in the sense that no single word has

probability much larger than in the uniform distribution.

An exhaustive search confirmed that no 20-bit pattern

occurs in these words with probability of more than

1:23x2
-20

. Similarly, no 10-b it pattern appears with

probability larger than 1:06x2
-10

. Due to the structure of

the key expansion procedure, the performance of MARS

is essentially independent of the key-length used [1].

IV. HARDWARE IMPLEMENTATION

For the hardware implementation we used a FSM

(Finite State Machine) to implement the functionality of

key expansion module. The general architecture of an

FSM consists of combinational block of next state logic,

state registers, and combinational output logic.

Fin ite state machine must be initialized by means of

an explicit reset signal. Otherwise, there is no reliable

way to get the VHDL and gate level representation of

the FSM into the same known state, and thus no way to

verify their equivalence. The description of a finite state

machine consists of a process, synchronized on a clock

edge (clk).

The module from figure 2 is described using an

FSM. There are many ways to describe a finite state

machine in VHDL. We use a process containing a case

statement [7]. The state of the machine is stored in a

state variable, and the possible states are represented

with a user-defined enumeration type. The type

declaration gives symbolic names to each of the states,

but say nothing about their hardware implementation.

Figure 2. The detailed structure of key expansion module

Figure 3. The state transition diagram for key expansion
module

Fin ite state machine must be initialized by means of

an explicit reset signal. Otherwise, there is no reliable

way to get the VHDL and gate level representation of

the FSM into the same known state, and thus no way to

verify their equivalence. The description of a finite state

machine consists of a process, synchronized on a clock

edge (clk).

The state transition diagram for encryption command

structure is shown in figure 3. The possible states are:

idle,init,expansion,change,final. All state transitions

occur on a rising edge of a global master clock (clk).

Some of the transitions depends on signals such us

key_exp_init. Idle is a waiting state, the initialization

state for the finite state machine. On the first rising edge

of the clock, after the key_exp_init signal is set init

becomes current state. In this state the variable are

initialize. On the next rising edge of the master clock

expantion becomes current state and the computing

process begin. On the next rising edge the change

becomes current state. The FSM leaves this state and the

next state is final. After this the FSM reach again the

idle state, waiting for another task. Reset and key_exp

init are external asyncronous signals, first for general

reset and the second for starting the key expantion

process.

The architecture for this command structure consists

of processes. In VHDL a process contains sequential

statements. While each process executes its statements

in sequence, mult iple processes interact with each other

concurrently.

The architecture for subkeys generation module

consists of some of the following processes: sync_p,

async_p. The FSM can be describe using VHDL as

below:

async_p: process (clk, current_s, key_exp_in it)

begin

case current_s is

 when idle_s =>

 if key_exp_init='1' then

 next_s <=init ializare;

 else

 next_s <=idle_s;

 end if;

 when initializare =>

Key Expansion

Module

40x32

word

key

reset

clk

init

user-

supplied key

reset

clk

key_exp_init

key_in

 128

key_exp_init

reset

init

expansion

change

final

idle

Volume 3, Number 1, 2010

121

 next_s <=expandare;

 when expandare =>

 next_s <=modificare;

 when modificare =>

 next_s <=final;

 when final =>

 next_s <=idle_s;

end case;

end process;

A. Design Implementation Summary

Design Summary

 Number of errors: 0

 Number of warn ings: 0

 Number of CLB slices: 131

 Number of function generators: 5

 Number of flip flops or latches: 261

 Number of external Iobs: 130

 Number of Bufgs: 1

 Number of Bufgpads: 1

Total equivalent gate count for design: 2118

--

Device utilization summary:

 Number of External GCLKIOBs 1 out of 4 25%

 Number of External IOBs 130 out of 404 32%

 Number of SLICEs 131 out of 12288 1%

 Number of GCLKs 1 out of 4 25%

Timing constraint: Defau lt period analysis

 1810 items analyzed, 0 timing errors detected.

 Minimum period is 18.468ns.

Timing constraint: Defau lt net enumerat ion

 268 items analyzed, 0 timing errors detected.

 Maximum net delay is 12.963ns.

Timing summary:

Timing erro rs: 0 Score: 0

Constraints cover 1810 paths, 268 nets, and 536

connections (100.0% coverage)

Design statistics:

 Minimum period: 18.468ns (Maximum frequency:

54.148MHz)

 Maximum net delay: 12.963ns

--

The MARS key expansion procedure expands the

input 128-b it key into a 1280-b it key. First a linear-key

expansion occurs following by stirring the key-words

based on an S-box. Both processes involves simple

operations performed repeatedly. However, the final

stage of modifying the multiplication key-words

involves string-matching operations that are relatively

expensive functions. String-matching is an expensive

operation compared with the rest of the operations

required by MARS. A compact implementation of

string-matching introduces high latency while a h igh-

performance implementation increases the area

requirements dramatically. The implementation of key-

sheduling in [2] gives a number of 2275 # of slices.

Even if all studies show that in hardware

implementation MARS is the slowest one compared

with the other four AES candidates [2], [5], it is still

faster than DES. MARS has a very high level of security

and is much more efficient than many older algorithms.

V. CONCLUSIONS

The main strength of MARS is its robustness [4].

This was the main design goal, and MARS contains

more “fail stop” mechanisms . Due to the heterogeneous

structure and the large variety of “strong operations” in

MARS, even a major advance in the cryptanalysis of

any one of its components is very unlikely to lead to a

significant attack against the overall cipher [6].

MARS is also a very fast cipher in common use

environments (i.e ., in software). The large number of

fail-stop mechanisms in MARS makes its hardware

implementation more involved, but it is still very small

and cheap to implement in hardware, and is suitable to

any real-life environment [4].

FPGA devices are a highly promising alternative for

implementing private-key cryptographic algorithms.

Compared with software-based implementations, FPGA

implementations can achieve superior performance [2].

Security issues also make FPGA implementations more

advantageous than software-based solutions. Hardware

cryptographic devices can be securely encapsulated to

pre vent any modification of the implemented algorithm.

In this paper we present a FPGA implementation of

key expansion procedure using Virtex devices.

REFERENCES

[1] Burwick, Coppersmith, D'Avignon, Gennaro, Halevi,

Jutla, Matyas Jr., O'Connor, Peyravian, Safford, Zunic,
``MARS - a candidate cipher for AES''

http://www.research.ibm.com/security/mars.html

[2] A. Dandalis, V. K. Prasanna, J. D. P. Rolim - A

Comparative Study of Performance of AES Final

Candidates Using FPGAs, Proceedings of the Second
International Workshop on Cryptographic Hardware and

Embedded Systems, 2000, Pag. 125 – 140, ISBN:3-540-

41455-X

[3] MARS - a candidate cipher for AES, Carolynn Burwick,

Don Coppersmith, Edward D’Avignon, Rosario Gennaro,
Shai Halevi, Charanjit Jutla,Stephen M. Matyas Jr., Luke

O’Connor, Mohammad Peyravian, David Safford,

Nevenko Zunic, IBM Corporation, Revised, September, 22

1999

[4] IBM MARS Team, MARS and the AES Selection
Criteria, May 15, 2000

[5] Federal Register; Department of Commerce: National

Institute of Standards and Technology.

http://www.nist.gov/aes

[6] T. Wollinger, J. Guajardo, C. Paar - Security on FPGAs:
State of the Art Implementations and Attacks ACM

Special Issue Security and Embedded Systems Vol. No. 3,

[7] Xilinx Coorporation. Virtex Series FPGAs

Journal of Computer Science and Control Systems

122

