

Indexat la: Fişa suspiciunii de plagiat / Sheet of plagiarism’s suspicion
34/06

Opera suspicionată (OS) Opera autentică (OA)
Suspicious work Authentic work

OS Mang E., Mang I., “Determin large prime numbers to compute RSA system parameters”,
Journal of Computer Science and Control Systems, Vol.1, Nr. 1, p.54-57, 2008. Disponibil la:
http :// electroinf . uoradea . ro / reviste %20 CSCS / documente / JCSCS _ 2008 / JCSCS _
2008 _ 10 _ MangE _ 1 . pdf

OA Beth, T.,Gollmann, D., “Algorithm Engineering for Public Key Algorithms”, IEEE Journal on
selected areas in communications, Vol. 7. No 4, p.458-465, May 1989.

Incidenţa minimă a suspiciunii / Minimum incidence of suspicion
p.54:17s - p.57:19s p.458:6s - p.459:37d

Fişa întocmită pentru includerea suspiciunii în Indexul Operelor Plagiate în România de la
www.plagiate.ro

458 IEEE J O U R N A L O N S E L E C T E D A R E A S IN COMMUNICATIONS, VOL. 7. NO 4. MAY 1989

Algorithm Engineering for Public Key Algorithms
THOMAS BETH A N D DIETER GOLLMANN

Absfracf-We will examine ways of implementing public key algo-
rithms based on modular integer arithmetic (RSA) and finite field
arithmetic (Diffie-Hellman, EIGamal). In particular, we will he con-
cerned with architectures for VLSI implementations.

I . INTRODUCTION
ESEARCH on public key algorithms has been con- R cerned mainly with security aspects. The results of

this research have induced sufficient confidence to apply
public key cryptography on a larger scale. The I S 0 and
CCITT have been discussing public key systems. As an
example, take the CCITT directory authentication frame-
work [12], which refers to a public key algorithm. (Pre-
cisely which algorithm will be used is left for discussion,
although RSA is obviously a prime candidate.) ISDN can
create new applications for public key algorithms if their
implementations can meet requirements ranging from bit
rate (from 64 kbits/s up to 140 Mbits/s), to storage and
chip area, to physical security.

Realizations of some of the most popular public key
algorithms rely essentially on efficient exponentiation. In
the RSA algorithm, encryption and decryption are per-
formed by exponentiation modulo a large integer N . Ex-
ponentiation will be decomposed into a square-and-mul-
tiply algorithm. In modular integer arithmetic, squaring
is usually as difficult as multiplication. Hence, we will
only deal with the second. Binary representation of num-
bers suggests using a shift-and-add algorithm for multi-
plication. Reduction modulo N is usually performed after
each shift-and-add step. To perform addition efficiently,
the propagation of carries has to be controlled. This can
be done by carry-look-ahead techniques [33] . Because of
the area required. this architecture cannot be extended to
an arbitrary length of look-ahead. Alternatively, a redun-
dant delayed-carry representation can be used [9], [29],
[3 5] . The carries have to be resolved only at the end of a
multiplication. An alternative is Bucci’s method [101,
which takes multiplication itself as a primitive operation.
and computes the modulus by a series of multiplications,
and cuts off the least significant bits (Isb’s).

The Diffie-Hellman key exchange system and the
ElGamal public key system are both based on exponen-
tiation in a finite field G F (q) . For q prime, the consid-
erations for modular integer arithmetics apply again. New
aspects arise in the case q = 2 ” . Exponentiation in GF(2”)

Manuscript receiicd Augurt I . 1988; rekiscd January IS. 1989.
The a u t h o r s are v.ith thc Fahilltiit t i i r Inlormatik. Universitit K a r l s r u h c .

7500 K a r l h r u h e I. Wcbt Gernim)
IEEE Log Nunihcr 8927 17 I

will again be decomposed into a square-aFd-multiply a!-
gorithm. In G F (2 ”) , we have (U + 21)- = U’ + l j - ;

hence, squaring is a linear operation. Thus, we can hope
for more efficient squaring algorithms. Different basis
representations will favor multiplication or squaring, re-
spectively. Squaring in a polynomial basis is, in general,
as expensive as mdtiplication. The same holds for dual
basis representations. In a normal basis, squaring be-
comes a cyclic shift and can be performed in a single clock
cycle. This fact has been used in the design of the Mas-
sey-Omura multiplier [27]. However, the circuit for mul-
tiplication will require, in general, O (n 2) gates and have
a rather irregular structure, so that the choice of a suitable
normal basis is of great importance.

11. RSA
Implementations on 8-bit microprocessors, as used on

chip cards (Hitachi 65901, SEEQ 72720/TMS-7000) or
on circuits based on processors of the 68000 family,
achieve about 10-700 bits/s (for a 512-bit RSA). Dedi-
cated circuits built with standard techniques yield about
6800 bits/s (CYLINK Inc., RSA Inc.). This bit rate may
be sufficient for authentication and signature schemes
using the Fiat-Shamir protocol [191, which uses very few
multiplications. However, for general security applica-
tions in ISDN, at least 64 kbits/s has to be achieved, and
ultimately, several megabits per second must be achieved
for broadband ISDN.

In the first part of our paper, we will therefore present
a variety of algorithms that can help to facilitate better
performance. Several authors have announced chips, e.g. ,
the CT 100 18 microprocessor from Crypto-Technologies.
or algorithms [3 3] , [35] that can achieve ISDN data rates.
Usually, efficient implementation of these algorithms will
demand a dedicated hardware architecture. Thus. we will
establish a close connection between full custom VLSI
design and the “mathematics” of these algorithms.

A . The Algorithrii
The public key algorithm most frequently referred to

was proposed by Rivest, Shamir, and Adleman [32] in
1978. It is based on modular exponentiation.

We start with a short description of the RSA algorithm.
The private information of a user consists of two primes
p and q. Security considerations suggest using two primes
with up to 100 decimal digits. From this private infor-
mation, the user computes the public key, consisting of
the product N = p . q and a number e > 1 which is
coprime to p - 1 and q - 1. To transmit a message. the

0733-87 l6/89/0500-0458$01 .OO O 1989 IEEE

Dorin
Polygon

Dorin
Polygon

Dorin
Polygon

Dorin
Polygon

Dorin
Polygon

Dorin
Polygon

Dorin
Polygon

Dorin
Polygon

BETH A N D GOLLMANN: PUBLIC KEY ALGORITHMS 459

sender divides the message into blocks m, where m, are
numbers in the interval [1, N - 1 1 . To encipher a block
m, the sender uses the public numbers N and e to form

m + “ M O D N .

The receiver knows the factors of N = p q and is thus
able to compute in advance the (secret) deciphering key
d , d E [1, (p - 1) (q - l)] , uniquely defined by

e d = 1 MOD (p - 1) (q - 1).

Elementary number theory guarantees, for c = me MOD
N ,

cd = m MOD N .

The security of RSA depends on the difficulty of factoring
“hard” large numbers. Most numbers can be factored
easily, so the primes p and q have to be chosen carefully
to give a “hard” number N . This proves to be not too
difficult. On the other hand, it still seems impossible to
factor hard numbers with 200 decimal digits, even using
supercomputers or other advanced computer architectures
(cf. Caron and Silverman [113 and Davis, Holdridge, and
Simmons [161).

It should be noted that RSA or similar systems can be
used to implement security services, including key man-
agement, encipherment, signatures, and authentication.
For the latter applications, new zero-knowledge tech-
niques (cf. Goldreich, Micah, and Wigderson [15] and
Berger, Kannan, and Peralta [2]) have been proposed by
Fiat and Shamir [191.

B. Exponentiation MOD N
All of the above applications require in one way or an-

other algorithms for computing the modular exponentia-
tion

m --f me MOD N .

At this point, we will make no further assumptions on the
structure of N . Exponentiation can be implemented by a
square-and-multiply algorithm (Knuth [23]). There are
two ways this can be done. Starting from the lsb of the
exponent, we get

(m 2 ” - ‘) e ’ - I
m e = m e U (m 2) y m 4) e ? . . .

(n denotes the length of the binary representation of N).
Multiplying the intermediate result with (m 2L) “ and up-
dating m2‘ to m2”’ can be done in parallel. Hence, we
call this the parallel square-and-multiply algorithm. Start-
ing from the most significant bit (msb) of the exponent,
we get

2 . * * me’> * meU. m e = (. . . ((m e , j - i) 2 .
The intermediate result has to be squared before it can be
multiplied by m”‘. Hence, we call this the serial square-
and-multiply algorithm. We have now identified the two
basic operations: “square MOD N ” and “multiply MOD
N . ” These are fixed-point long-integer arithmetic opera-
tions. As N is odd, we can divide by 2 MOD N . In a

binary number representation, this is just a shift and pos-
sibly an addition. The product a . b can thus be computed
by

(U + b)’ - a’ - b2
2

a * b =

using only additions and squaring. Hence, we assume that
squaring is about as expensive as multiplication and ex-
amine only the latter.

C. Multiplication MOD N

and-add algorithm for multiplication.
Binary number representations suggest using a shift-

= a,b + 2 a , b + 4 a 2 b + - + 2 ” - i a , , - l b

has a structure similar to that of the parallel square-and-
multiply algorithm. It is obvious how a serial shift-and-
add algorithm could be defined. Multiplication by 2 MOD
N comprises a shift and, when the result is larger than N ,
also an addition by - N . Addition MOD N is thus the es-
sential basic operation in our decomposition of exponen-
tiation MOD N . The following topics will be addressed
in the search for efficient multiplication algorithms.

Control of the Carries: Simple carry-ripple adders
would take too much time. This disadvantage has to be
faced when implementing RSA on a standard micropro-
cessor.

Computation of Residues MOD N : Intermediate re-
sults need not be reduced MOD N after each step; some
time can be gained by allowing some overflow and adding
an appropriate multiple of - N . This gain in time has to
be balanced against the additional space for storing the
multiples of - N .

Step- Width in Shift-and-Add: The factor a need not
be processed bit by bit as suggested in the above shift-
and-add algorithm. The time for multiplication may be
reduced by dealing with substrings of a, either of fixed or
arbitrary length. Treating a as a sequence of runs of 0’s
and 1’s is an example for the second case.

There exist different propositions to handle these prob-
lems. These propositions will be discussed in the follow-
ing paragraphs.

D. Brickell’s Algorithm
Timing problems due to carry propagation can, of

course, be controlled by avoiding carries for as large a
part of an addition as possible. This can be achieved by
using a redundant representation of numbers that ensures
that carries can propagate only by one bit. Longer ripples
will occur only when converting the redundant represen-
tation back to some standard binary format. The well-
known carry-save adder was modified by Norris and Sim-
mons to a “delayed-carry” adder [29]. Brickell [9] has
extended this technique to a multiplication algorithm that

Dorin
Polygon

Dorin
Polygon

Dorin
Polygon

Dorin
Polygon

Dorin
Polygon

