
 

 

Indexat la: Fişa suspiciunii de plagiat / Sheet of plagiarism’s suspicion 
39/01 

 

Opera suspicionată (OS) Opera autentică (OA) 
Suspicious work Authentic work 

 

OS MANG, Erica, MANG, Ioan, POPESCU, Constantin. Cryptanalise aspects on the block 
ciphers of RC5 and RC6.  Proceedings of International Symposium on System Theory. 
SINTES’11, Craiova, 2003, p.1-6, Disponibil la: http :// ace . ucv . ro / sintes11 / 
Volume2 / 4%20COMPUTERS % 20ENGINEERING / IC10_Mang _ Erica _ 1.pdf. 

OA SHIMOYAMA, T., TAKEUCHI, K., HAYAKAWA, J. Correlation atack to the block cipher 
RC5 and the simplified variantes of RC6. 2001. p.2-15, Disponibil la: http: // www . 
google . ro / url ? sa = t&rct = j&q = &esrc = s&source = web&cd = 1&ved = 
0CHMQFjAA&url = http%3A%2F%2Fciteseerx . ist . psu . edu % 2Fviewdoc % 
2Fdownload % 3Fdoi % 3D10.1.1.31.2917 % 26rep % 3Drep1 % 26type % 3Dpdf&ei = 
h0ipT82GCPOK4gT _ hbHMCQ & usg = AFQjCNFqjSpnl64zpjr-m6g3K2FgHssXIA 

 
Incidenţa minimă a suspiciunii / Minimum incidence of suspicion 

p.1:1s – p.1:16s. p.1:10 – p.1:21 p.1:19s – p.6: 21 p.1:22 – p.13:6 
p.2:Table 1 p.3:Table 1 p.3:Table 2 p.5:Table2 

Fişa întocmită pentru includerea suspiciunii în Indexul Operelor Plagiate în România de la 
www.plagiate.ro 

 





Correlation Attack to the Block Cipher RC5

and the Simpli�ed Variants of RC6

Takeshi Shimoyama�, Kiyofumi Takeuchiy, Juri Hayakaway

� Fujitsu Laboratories LTD.
4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki 211-8588, Japan

E-mail : shimo@flab.fujitsu.co.jp

y Dept. of Information System Engineering, Chuo University
1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-0003, Japan

E-mail : fktakeuch,jhayakawg@tsujii-lab.ise.chuo-u.ac.jp

Abstract. In August 1999, Knudsen and Meier proposed an attack to
the block cipher RC6 by using correlations derived from �2 tests. In
this paper, we improve the attack and apply this method to the block
cipher RC5 and simpli�ed variants of RC6, and show some experimental
results. We show this approach distinguish the random permutation and
RC5 with of up to 20 rounds by using chosen ciphertexts attack. We also
show our approach for deriving the last round key of up to 17 rounds
RC5 by using chosen plaintext attack. Moreover, we show full rounds
RC5 with some weak key can be broken by using lesser complexity than
that of the exhaustive search. Additionally, this method can be applicable
to simpli�ed variants of RC6, that is, RC6-INFR, RC6-NFR, RC6-I, we
observe the attack to these block ciphers.

1 Introduction

RC5 is a block cipher designed by R.Rivest in 1994 [10]. One of the reason that
many cryptographers were interested in cryptanalysis of RC5 comes from its
simple structure.

Kaliski and Yin evaluated RC5 with respect to di�erential and linear crypt-
analysis [3]. The paper shows that linear cryptanalysis is applicable for versions
of RC5 with a small number of rounds. Moriai et al., found some weak key
against linear attack [9]. An improvement of Kaliski and Yin's attack by a fac-
tor of up to 512 was given by Knudsen and Meier [4]. Biryukov and Kushilevitz
proposed drastic improvement of the previous results due to a novel practical
di�erential approach [1]. Their attack requires 244 chosen plaintexts which is
smaller than complexity of exhaustive key search. In their approach, they study
more complex di�erentials than in previous works, and de�ned a more general
notation, so called \good pair," with respect to data dependent rotations. In
their method, good pairs were searched by using Hamming weights of di�er-
ences for each round, then the key of last round were derived. Their attacking
algorithm, however, is rather complicated and it does not seem so easy to dis-
tinguish good pair and others correctly, because of inuences of addition of key
to the hamming weights of di�erentials.
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In August 1999, Knudsen and Meier posted to the internet news an infor-
mation of their new paper dealing with cryptanalysis of RC6 [6]. In the paper,
they used extremely di�erent technique from the previous approach, that is, cor-
relations obtained from �2 test. In their approach, for �xing each of the least
signi�cant �ve bits in some words of plaintexts and investigate the statistics of
the 10-bit integer obtained by concatenating each of the least signi�cant �ve bits
in some words of ciphertexts. To measure the e�ect of the distribution of the
target bits, they forced the values of 10 bits by taking appropriate plaintexts
and they computed the �2-value of the 10 bit integers, then they compaired to
�2-distribution with 1023 freedom, and distinguished RC6 from a random per-
mutation. They estimated from systematic experimental results that version of
RC6 whose round is reduced can be distinguished from a random permutation.
Moreover, they constructed a key-recovery method for RC6 with up to 15 rounds
which is faster than exhaustive key search.

In this paper, we improve the Knudsen and Meier's attacking algorithm ob-
tained from �2 tests, and apply this to the RC5 encryption algorithm. Then
we show the experimental results of attacking the RC5 with reduced rounds.
Our computatinal experiments show that RC5 with up to 20 half rounds can be
distinguished from a random permutation by using 254 chosen ciphertext. More-
over, we show that full round RC5 with a weak key which is available one in 220

keys is distinguishable from random permutation with less than complexity of
exhaustive key search.

Furthermore, we construct an algorithm for key recovery using the correlation
and show the computational experiments. From our experiments, we conclude
that the last round key of RC5 with up to 17 half rounds, or RC5 with up to full
round with respect to a weak key can be recovered by using 254 chosen plaintext
attack with success probability 80%.

At last, we observe the strength of the simple variants of RC6 demonstrated
in [2], that is RC6-INFR, RC6-NFR and RC6-I, against our improved attacking
algorithms. Then we showRC6-INFR, RC6-NFR with up to 19 rounds, and RC6-
I with up to 15 rounds are breakable for our improved distinguishing algorithm.
Moreover we show full round RC6-INFR, RC6-NFR with respect to a weak key
existing in a ratio of one to 245 are breakable by using our distinguishing attack.

2 Preliminary

In this section, we note some notations and de�nitions. At �rst, we recall the
�2 tests for distinguishing a random sequence taking from uniform distribution
and non-random sequence. (See [6, 7].)

Proposition 2.1 Let A be a set fa0; :::; am�1g Let X = X0; :::; Xn�1 be in-

dependent and identically distributed random variables taking from the set A
uniformly. Let Naj (X) be the cardinality of variables in X which is equal to aj .
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Table 1. The chi-square distributions with 31 and 1023 degrees of freedom

level 0.5 0.90 0.95 0.99 0.999
�2 30.33 41.42 44.99 52.19 61.09

�2 distribution of 31 degrees of freedom

level 0.5 0.90 0.95 0.99 0.999

�2 1022.0 1080.94 1098.92 1130.89 1168.85

�2 distribution of 1023 degrees of freedom

Fig. 1. RC5 encryption algorithm

S[1]S[0]

S[i+1]

<<<

repeat r times
1 half round

A B

Ai Bi

Ar Br

xi (5bits)

The �2 statistic �2(X) of X is de�ned by

�2(X) =
m

n

m�1X

i=0

(Nai(X)�
n

m
)2:

Then, the distribution of �2(X) can be approximated to the chi-square distribu-

tion with m � 1 degrees of freedom for large n.

Table 1 shows the chi-square distributions with 31 degrees and 1023 degrees of
freedom, which we will use in the following sections. For example, level = 0:999
and �2 = 61:09 in Table 1 means that �2 values of 99.9% of random sequences
with n elements taking from the set of 32 elements uniformly will not exceed
61.09 for large n. We comment that, for �2 tests, n should be large enough
such that each expected value of Nai (X) (that is, n=m) is larger than 4 or 5, in
practical. (See [7].)

Figure 1 shows RC5 encryption algorithm. We de�ne the following notations.
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ls5(A) : least signi�cant 5 bits of a 32 bits word A
(A;B) : plaintext of RC5 (32 bits * 2)
(A0;B 0) : ciphertext of RC5 (32 bits * 2)
(Ai;Bi) : output of i-th half round, especially, (A0; B0) = (A;B)

and (Ar; Br) = (A;B)
xi : amounts of data dependent rotation in the i-th half round,

that is ls5(Ai)
yi : xr�i+1

3 �
2 tests of RC5

In this section, we explain the �2 tests for plaintexts and ciphertexts of RC5. The
notations are followed from the previous section. We examine 4 di�erent types
of �2 tests. For each test, we observe the �2 statistics of 5 bit in the plaintexts
or ciphertexts.

Test1 : Fix least signi�cant 5 bits of plaintext A to 0, and compute �2 of least
signi�cant 5 bits of ciphertext A0.

Test2 : Fix least signi�cant 5 bits of plaintext A and B to 0 and compute �2

of least signi�cant 5 bits of ciphertext A0.
Test3 : Fix least signi�cant 5 bits of ciphertext B0 to 0, and compute �2 of

least signi�cant 5 bits of plaintext B.
Test4 : Fix least signi�cant 5 bits of ciphertext A0 and B0 to 0 and compute

�2 of least signi�cant 5 bits of plaintext B.

If RC5 was ideal random permutation, the distribution of the �2 value is
similar to the �2 distribution of 31 = 25 � 1 degrees of freedom. So, we set
up the threshold by 45 in order to distinguish from a random permutation. The
sequence whose �2 value extends more than 45 can be distinguish from a random
permutation in probability 95 %. (See Table 1.)

Table 2 shows the results of �2 tests. Each entry of �2 value is an average
of 100 �2 value of di�erent 100 keys. The numbers denoted by bold character
are the �2 values at the �rst coming over 45. These experiments show that each
additional two half rounds require about 26 times as many texts to get about
the same �2 value. The results of the Test 1 and Test 3 show that the each
number of required data are almost same. On the other hand, each the number
of required elements in Test 2 is 23 times as many as corresponding one of Test
4, because of the inuences of the initial key S[1]. It means that if the value of
data dependent rotation at the �rst round is �xed 0, the �2 value of the target
bits in the output of last round becomes much more larger.

4 Distinguishing algorithm and weak key

By the examination described in the previous section, we conclude that the better
way in order to distinguish the RC5 encryption and a random permutation in
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Table 2. Evaluations of the �2 tests (Test1,...,Test4, average of 100 keys)

Test 1 (�x ls5(A) = 0 ) Test 2 (�x ls5(A) = ls5(B) = 0 )

4 half rounds
#data 210 211 212 213 214 215

�2 30 33 37 41 47 66

6 half rounds
#data 216 217 218 219 220 221

�2 30 31 34 41 52 70

8 half rounds
#data 222 223 224 225 226 227

�2 29 31 31 34 46 63

10 half rounds
#data 228 229 230 231 232 233

�2 31 31 32 35 51 72

4 half rounds
#data 26 27 28 29 210 211

�2 31 31 34 40 57 82

6 half rounds
#data 212 213 214 215 216 217

�2 29 32 35 40 47 61

8 half rounds
#data 218 219 220 221 222 223

�2 32 32 36 42 55 81

10 half rounds
#data 224 225 226 227 228 229

�2 32 33 36 42 55 90

Test 3 (�x ls5(A0) = 0 ) Test 4 (�x ls5(A0) = ls5(B0) = 0 )

4 half rounds
#data 210 211 212 213 214 215

�2 31 32 34 38 47 59

6 half rounds
#data 216 217 218 219 220 221

�2 30 33 35 40 49 66

8 half rounds
#data 222 223 224 225 226 227

�2 29 31 31 34 46 63

10 half rounds
#data 228 229 230 231 232 233

�2 30 31 33 35 50 69

4 half rounds
#data 23 24 25 26 27 28

�2 12 11 39 48 62 94

6 half rounds
#data 29 210 211 212 213 214

�2 32 34 36 39 47 60

8 half rounds
#data 215 216 217 218 219 220

�2 32 34 38 44 65 101

10 half rounds
#data 221 222 223 224 225 226

�2 32 34 35 42 56 85

the four conditions described in Test1 to Test4, is the condition in Test4. We
consider a following algorithm. It is one of the chosen ciphertext attack.

Algorithm 4.1 (Distinguishing attack)
Input: RC5 algorithm or random permutation, n : a number;

Output: answer that Input is RC5 or not;

for i from 1 to n
Let A0, B0 be a random number such that ls5(A0) = ls5(B0) = 0;
(A;B) = decrypted message of (A0; B0);
count up the counter map[ls5(B)];

calculate �2 of the map;
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Table 3. Precisely examination of �2 and number of data in Test 4

(average of 400 keys, machine : 24 * Ultra SPARC 360MHz)

#half rounds 6 7 8 9 10 11 12
#data (log2) 12.32 15.71 18.58 21.31 24.09 27.81 30.17

�2 45 46 46 45 45 46 45

Table 4. Estimation of the number of required text for distinguishing attack

#half rounds 13 14 15 16 17 18 19 20 21 22 23 24
#data (log2) 33.28 36.25 39.22 42.19 45.16 48.13 51.1 54.07 57.04 60.01 62.98 65.95

1 in 25 keys 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1 54.07 57.04 60.01 62.98
1 in 210 keys 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1 54.07 57.04 60.01
1 in 215 keys 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1 54.07 57.04
1 in 220 keys 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1 54.07

1 in 225 keys 18.43 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13 51.1
1 in 230 keys 15.46 18.43 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16 48.13
1 in 235 keys 12.49 15.46 18.43 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19 45.16
1 in 240 keys 9.52 12.49 15.46 18.43 21.4 24.37 27.34 30.31 33.28 36.25 39.22 42.19

if �2 � 45 then return the answer \Input is RC5";

else return the answer \Input is a random permutation";

In order to estimate the complexity of Algorithm 4.1, we compute the number
of required elements that the �2 value exceeds the 45 more precisely, for each
rounds of RC5. Table 3 shows the results. From Table 3, we calculate the relation
between the number of required elements and the number of rounds by using
the method of least squares;

log2(#data) = �+ �r + ";

where r is a number of half rounds and " is a bias. Then we have � = �5:33; � =
2:97; " = 0:17 This means that each additional one half rounds, Algorithm 4.1
requires almost 23 times as many texts to get about the same �2 value on average.
Table 4 shows that the estimated number of required texts for Algorithm 4.1.

In Algorithm 4.1, since the 10 bits in cipher text bits are �xed zero, the total
amounts of admissible texts is 254. From Table 4, (by omitting the small bias,)
our distinguish attack can be applicable reduced RC5 with up to 20 half rounds.

Now, we consider the weak key. From the assumption of Algorithm 4.1,
amount of a data dependent rotation in the last round is �xed 0. Moreover if the
condition ls5(S[r+1]) = 0 holds, the amount of rotations of last two rounds are
0. In this case, the last round does not inuence the �2 value, that is the security
level is equal to that of r � 1 rounds RC5. This case happen every one in 25

keys. In the same way, if the condition ls5(S[r+1]) = ::: = ls5(S[r� t+ 2]) = 0
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holds, the security level against Algorithm 4.1 is as same as r � t rounds RC5.
There is one weak key in 25t.

Since, it is easy to check whether the key is a weak key or not, we can �nd
the following weak key.

key0 = f5b,2d,16,0b,7a,3d,9e,cf,7e,3f,9f,cf,af,d7,eb,75g16

In this key, we can check ls5(S[19]) = ::: = ls5(S[25]) = 0. Therefore the 24
half round RC5 encryption with key0 has the same security as 17 = 24 � 7 half
rounds RC5. From Table 4, this RC5 encryption algorithm is distinguished from
random permutation in 245:16 number of data.

5 Key recovery algorithm

In this section, we propose an key recovery algorithm by using the �2 statistics
of RC5 with r half rounds.

5.1 Knudsen, Meier's approach

In [6], Knudsen et al. proposed an algorithm for key recover of the extended key
of the �rst round of RC6 by using �2 statistics. Their approach uses the property
that the zero amounts of the �rst rounds data dependent rotation growths the
�2 value. First of all, we try to modify their approach to a key recovery of RC5.

Algorithm 5.1 (Knudsen,Meier (modi�ed))
Input : RC5 encryption algorithm of unknown secret key

Output : candidate of ls5(S[1])

for each plaintext (A;B), where ls5b(A) = 0
compute ciphertext (A0; B0);
s0 = 32� ls5(B) mod 32;
y1 = ls5(A0);
count up the memory map[s0][y1];

for each s0
�2[s0] = �2 of map[s0];

return s such that �2[s] = maxf�2[s0]js0 = 0; :::; 31g;

In order to obtain the high success rate of the above key recovery algorithm,
the average of �2 is far smaller than the amount of �2 in the case of zero rotation.
Table 5 shows the experiment of �2 value of each rotation nearly equal to 0.
Though the amount of �2 at the 0 rotation always highest, �2 values near of 0
still large, so the average of �2 is not small. By this reason, we can not obtain
high success rate of this algorithm. In fact, from the experimental results of the
algorithm, we have only 20 { 30 % of success probability, at most. (See Figure 2.
The line of success shows the times that the answer is correct, and the line of
nearly shows the times that the answer is in the range of correct key � 1 mod
32. 6, 8 mean the correspond to 6 rounds and 8 rounds, respectively)
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Table 5. Data dependent rotation of 1st round and �2 values

6 half round of RC5 (average of 500 tests)

data 26 27 28 29 30 31 0 1 2 3 4 5 6
212 31 31 32 34 36 38 43 40 35 33 31 31 31
213 31 32 33 39 41 45 55 49 39 38 33 31 31
214 32 33 37 47 51 61 79 69 48 46 35 33 32
215 34 35 44 62 73 91 127 106 67 61 40 35 35

Fig. 2. Success probability of recovering 5 bits of key by using modi�ed Knudsen,
Meier's approach
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5.2 Recovering the least signi�cant 5 bits of the last round key

In this section, we show an algorithm for recovering the least signi�cant 5 bits
of the last round key S[r + 1] by using chosen plaintext attack.

Suppose the least signi�cant 5 bits of each words of plaintexts is �xed 0.
(Namely (ls5(A) = ls5(B) = 0).) In this section, we only use the cipher-
texts (A0;B 0) corresponding to the plaintext (A;B) which satisfy the condition
ls5(A0) = 0. (In the next section, we also use the texts such that ls5(A0) 6= 0
for constructing the whole procedure recovering the last round 32 bits key.) We
note that the amount of last round data dependent rotation y1 is always 0.
Then, we have y2 = ls5(B0) � ls5(S[r + 1]) mod 32. Therefore, ls5(Ar�2) =
((A0 � S[r])ny2) mod 32. Since S[r] is �xed value, the �2 values of ((A0 �
S[r])ny2) mod 32 and (A0

ny2) mod 32 are almost same. In general, the �2

statistics of ls5(Ar�2) is much larger than �2 statistics of ls5(Ar). Now, we
consider the �2 value of ls5(Ar�2). We mention that, since we suppose that
ls5(A0) = 0, when y2 satis�es y2 � 4 or 28 � y2, some of bits in the ls5(Ar�2)
are �xed. Therefore, it is meaningless for compute the �2 value of ls5(Ar�2)

Dorin
Polygon

Dorin
Polygon



except for the case of 5 � y2 � 27. The algorithm is described in Algorithm 5.2.
The memory requirement of this procedure is 215 words (at most 128 Kbyte),
and the dominant step of computational complexty is the encryption stage.

Algorithm 5.2 (Shimoyama,Takeuchi,Hayakawa (1))
Input : RC5 encryption algorithm of unknown secret key;

Output : candidates ls5(S[r + 1]);

for each plaintext (A;B), where ls5b(A) = ls5b(B) = 0
compute ciphertext (A0; B0);
if ls5(A0) = 0

for each candidates s0 2 f0; :::; 31g of ls5(S[r + 1])
y2 = ls5(B0)� s0 mod 32;
if y2 � 5 and y2 � 27;

z2 = ls5(A0
oy2);

count up the memory map[s0][y2][z2];
for each s0, y2

�2[s0][y2] = �2 of map[s0][y2];
for each s0

ave[s0] = average of �2[s0][y2];
return s such that ave[s] = maxfave[s0]js0 = 0; :::; 31g;

[Special Criterion]
Occasionally, there is a case that the each counter satis�es the condition

map[s0][y2][0] = ::: = map[s0][y2][31] = 0

for some s0, y2. In this case, the coreect key is (y2 + s0) mod 32 in high prob-
ability. So return y2 + s0 mod 32. By using this criterion, we can easily obtain
the solution, in this special case.

Figure 3 shows that the success probability of the Algorithm 5.2 for rounds
6 and 8 obtained from 100 times of computer experiments. Each of success 6

and success 8 means the probability that the answers of 5 bits is correct, for 6
rounds attack and 8 rounds attack, respectively, nearly 6 and nearly 8 means
the probability that di�erence of answer and correct value is at most �1. For
6 rounds, we have success probability more than 50% by using 218 data, and
70% by using 220. Moreover, the probability that the bias is at most �1, is more
than 80% with 220 data, and 90% with 221 data. In 8 rounds, for each success
probability, the corresponding number of plaintexts is increased by a constant
factor of about 26.

5.3 Recovery of the last round key

In this section, we construct an algorithm for recovering the all bits of last
round key. Suppose ls5(A0) = i. Then the amount of last round data dependent
rotation y1 is equal to i, so y2 = ((B0 � S[r + 1])oi) � i mod 32. Let si =
(S[r+1]oi) mod 32. Since that the di�erence of yi and ((B0� (sini))oi)�
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Fig. 3. Success probability of recovering 5 bits of the last round key
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i mod 32 is at most �1, we use ((B0 � (sini))oi) � i mod 32 instead of yi.
The algorithm, described below, is constructed by the same way described in
the previous section.

Algorithm 5.3 (Shimoyama,Takeuchi,Hayakawa (2))
Input : RC5 encryption algorithm of unknown secret key;

Output : candidates S[r + 1];

for each plaintext (A;B), where ls5b(A) = ls5b(B) = 0
compute ciphertext (A0; B0);
y1 = ls5(A0);

for each candidates sy1 2 f0; :::; 31g of ls5(S[r + 1]oy1)
y2 = ls5((B0 � (sy1ny1))oy1) mod 32;
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if y2 � 5 and y2 � 27;
z2 = ls5(A0

oy2);
count up the memory map[y1][sy1 ][y2][z2];

for each y1, sy1 , y2
�2[y1][sy1 ][y2] = �2 of map[y1][sy1 ][y2];

for each y1, sy1
ave[y1][sy1 ] = average of �2[y1][sy1 ][y2];

for each y1
key[y1] = s0 such that ave[s0] = maxfave[i]ji = 0; :::; 31g;

concatinate key[y1] and derive 32 bit key S;
return S;

We comment that for concatinate the 32 candidates of 5bits to 32 bit integer,
we can use any error correcting algorithm, by using the property that each 5 bits
solution is di�erent from the correct value at most �1 in high probability.

At the end of this section, we discuss the weak key. The key recovering
algorithm described in this section, we suppose the least signi�cant 5 bits of
each words of plaintexts are �xed zero. From the same reason of the existence
of weak keys against distinguishing attack, if the condition ls5(S[0]) = � � � =
ls5(S[t]) = 0 holds, the security of the r rounds RC5 encryption using this key
is as same as the security level of r � t+ 1 half round RC5.

For example, in the case that the key satisfy ls5(S[0]) = ::: = ls5(S[8]) = 0,
24 round RC5 with this key has the same security of 17 half rounds. This key
can be found every one in 245 keys. In this case, from Figure 3, we can derive
the last round key bits with the success probability 80%.

6 Application to the simpli�ed variants of RC6

In [2], Contini et al. presented the some simpli�ed variants of RC6, that is RC6-I,
RC6-NFR, RC6-INFR, and the cryptanalyzed to these families. Knudsen et al.
proposed the attacking method to RC6 in [6]. In this section, we consider the
security against the attack using �2 statistics for the simpli�ed variants RC6-I,
RC6-NFR, RC6-INFR.

Each variant has reduced round function F compared with RC6. (See Figure
4 and Table 6.) Every one of simpli�ed variants is not one of the real world block
cipher, but prototype block cipher for comparing the security with that of RC6,
however, we think that cryptanalysis of these variants may be meaningful.

We mention that the least signi�cant 5 bits of the output of the round func-
tion of 3 variants are obtain from only 5 input bits. Therefore, we can apply the
Algorithm 5.2 to each variants with a little modi�cation. The remaining problem
is a relation of �2 value and number of rounds.

We observe the following two tests.

Test1 : Fix least signi�cant 5 bits of plaintext A and C to 0, and compute �2

of least signi�cant 5 bits of ciphertext A and C.
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Table 6. Round function F of variants of RC6

RC6-INFR RC6-I RC6-NFR RC6
F (x) = x xn5 x � (2x + 1) (x� (2x+ 1))n5

Fig. 4. Variants of RC6

S[1]S[0]

S[2i]

<<<

repeat 20 times
one round

A B

Ai Bi

Ar Br

t i

S[2i+1]

<<<

C D

Ci Di

Cr Dr

ui FF

S[43]S[42]

Test2 : Fix least signi�cant 5 bits of plaintextA, B, C and D to 0, and compute
�2 of least signi�cant 5 bits of ciphertext A and C.

In these tests, we set up the threshold by 1099. The sequence whose �2

value extends more than 1099 can be distinguish from a random permutation in
probability 95 %. (See Table 1.) Table 7 shows the results of the �rst number
of �2 coming up with 1099, and corresponding the number of data. (They are
averages of 50 times computer experiments.)

In the roughly consideration, from Table 7, we estimate that each additional
2 rounds require 212, 213 and 216 times as many number of texts to obtain the
same �2 value for the variants RC6-INFR, RC6-NFR and RC6-I, respectively
against the Test 1.

For the results of Test 2, the condition in the Test 2 makes decreasing the
initial values of the number of required data about 29, 29, 27 times of those of
the condition in Test 1, for RC6-INFR, RC6-NFR, RC6-I, respectively.

By using either the assumption used in Test 1, Test 2, it is estimated that
we can cryptanalysis up to 19 rounds of RC6-INFR, RC6-NFR, and up to 15
rounds of RC6-I. (We do not compute the precise value completely yet, the work
is in progress.)

Moreover, in assumption of Test 2, there is a weak key as the same reason
of the case in RC5. For example, a key satis�ed the following condition has the
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Table 7. �2 tests to the RC6 variants

Test1 : (�x lsb(A),lsb(C))
#rounds INFR NFR I RC6

2 213 (1159) 213 (1122) 213 (1107) 214 (1178)
4 225 (1152) 226 (1126) 229 (1171) 230 (1156)

Test 2 (�x lsb(A),lsb(B),lsb(C),lsb(D))

#rounds INFR NFR I RC6
2 27 (1193) 27 (1122) 213 (1100) 213 (1100)
4 216 (1109) 217 (1102) 222 (1141) 229 (1171)
6 228 (1164) 230 (1141)

same security level as 20� i round,

ls5(S[0]) = ::: = ls5(S[2i+ 1]) = 0:

Especially, in the case that ls5(S[0]) = ::: = ls5(S[3]) = 0, 20 round RC6-INFR,
RC6-NFR can be distinguishing from the random permutation by using lesser
complexity compaired with exhaustive search.

7 Conclusion

In this paper, we improved the Knudsen and Meier's attacking algorithm ob-
tained from �2 tests, and applied this to the RC5 encryption algorithm. Then
we showed the experimental results of attacking the RC5 with reduced rounds.
Our computatinal experiments showed that RC5 with up to 20 half rounds can
be distinguished from a random permutation by using 254 chosen ciphertext.
Moreover, we showed that full round RC5 with a weak key which is available
one in 220 keys is distinguishable from random permutation with less than com-
plexity of exhaustive key search.

Furthermore, we constructed an algorithm for key recovery using the corre-
lation and showed the computational experiments. From our experiments, we
concluded that the last round key of RC5 with up to 17 half rounds, or RC5
with up to full round with respect to a weak key can be recovered by using 254

chosen plaintext attack with success probability 80%.
At last, we observed the strength of the simple variants of RC6 demonstrated

in [2], that is RC6-INFR, RC6-NFR and RC6-I, against our improved attacking
algorithms. Then we showed RC6-INFR, RC6-NFR with up to 19 rounds, and
RC6-I with up to 15 rounds are breakable for our improved distinguishing algo-
rithm. Moreover we showed full round RC6-INFR, RC6-NFR with respect to a
weak key existing in a ratio of one to 245 are breakable by using our distinguish-
ing attack.
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We remark that further improvement of this attack will be considerd. It
may be also interesting that the similar attacks can be applicable or not to
another type of block cipher, for example MARS. Furthermore, it still remain
some important problem of how to protect or design block ciphers to be secure,
especially to have provable security, against the attacks by using �2 statistics,
but these are future works.
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