Decizie de indexare a faptei de plagiat la poziţia 00385 / 03.07.2017 şi pentru admitere la publicare în volum tipărit ### care se bazează pe: A. Nota de constatare şi confirmare a indiciilor de plagiat prin fişa suspiciunii inclusă în decizie. | Fişa suspiciunii de plagiat / Sheet of plagiarism's suspicion | | | | | |--|---|--|--|--| | | Opera suspicionată (OS) | Opera autentică (OA) | | | | | Suspicious work | Authentic work | | | | OS | Alexandru V. Horia, Antohe Stefan, Andronescu E, | Marin Gabriel, Nedelcu Liviu, Dutu Constantin Augustin, Jinga Sorin, Niţă Petru. Synthesis and properties of Ba (Zn applications. <i>Thin Solid Films</i> . 2008 Feb 15;516(7):1558- | | | | | | b) This work was supported by Ministry of Education | | | | | | 05. c) The papers was RETRACTED by the editor. | | | | OA | , , , , , , , , , , , , , , , , , | | | | | | of the sintering temperature on the Ba (Zn 1/3 Ta 2/3) O3 dielectric properties. <i>Journal of the European Ceramic Society</i> . 2007 Dec 31;27(2):1117-1122. (Available on-line in 12 June 2006). | | | | | | . , | , | | | | Note: This work was supported by Ministry of Education and Research under contract nr: 09N/505.2003. | | | | | | Incidenţa minimă a suspiciunii / Minimum incidence of suspicion | | | | | | | 9:02s – p.1559: 35s | p.1117:10d – p.1118:23s | | | | p.1559:37s – p.1559:08d | | p.1118:26s – p.1118:35s | | | | p.1559:Fig.2 | | p.1118:Fig.1 | | | | p.1559:09d – p.1560:14s | | p.1118:37s – p.1118:25d | | | | p.1560:19d – p.1560:31s | | p.1119:21s – p.1119:32s | | | | p.1560:04d – p.1560:14s | | p.1119:33s – p.1119:45s | | | | p.1560:21d – p.1561:03s | | p.1119:34s – p.1119:03d | | | | p.1561:10s – p.1561:21s | | p.1120:08d – p.1120:19d | | | | p.1561:22s – p.1561:23d | | p.1120:21d – p.1120:44d | | | | p.156 | 1:Fig.7 | p.1121:Fig.9 | | | | p.156 | 1:Fig.6 | p.1121:Fig.7 | | | | p.1562 | 2:34d – p.1561:38d; p.1562:10s – 1562:03d | p.1121:06d – p.1122:05s | | | | Fişa întocmită pentru includerea suspiciunii în Indexul Operelor Plagiate în România de la | | | | | | | Sheet drawn up for including the suspicion in the Index of Plagiarized Works in Romania at | | | | | | <u>www.plagiate.ro</u> | | | | **Notă**: Prin "p.72:00" se înțelege paragraful care se termină la finele pag.72. Notația "p.00:00" semnifică până la ultima pagină a capitolului curent, în întregime de la punctul inițial al preluării. **Note**: By "p.72:00" one understands the text ending with the end of the page 72. By "p.00:00" one understands the taking over from the initial point till the last page of the current chapter, entirely. **B**. **Fişa de argumentare a calificării** de plagiat alăturată, fişă care la rândul său este parte a deciziei. Echipa Indexului Operelor Plagiate în România # Fişa de argumentare a calificării | Nr.
crt. | Descrierea situației care este încadrată drept plagiat | Se
confirmă | |-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------| | 1. | Preluarea identică a unor pasaje (piese de creaţie de tip text) dintr-o operă autentică publicată, fără precizarea întinderii şi menţionarea provenienţei şi însuşirea acestora într-o lucrare ulterioară celei autentice. | ✓ | | 2. | Preluarea a unor pasaje (piese de creație de tip text) rezumate dintr-o operă autentică publicată, fără precizarea întinderii şi menţionarea provenienţei şi însuşirea acestora într-o lucrare ulterioară celei autentice. | | | 3. | Preluarea a unor pasaje (piese de creație de tip text) dintr-o operă autentică publicată anterior, prin parafrazare, fără precizarea întinderii şi menţionarea provenienţei şi însuşirea acestora într-o lucrare ulterioară celei autentice. | | | 4. | Preluarea identică a unor figuri (piese de creație de tip grafic) dintr-o operă autentică publicată, fără menționarea provenienței și însușirea acestora într-o lucrare ulterioară celei autentice. | ✓ | | 5. | Preluarea identică a unor tabele (piese de creaţie de tip structură de informaţie) dintr-o operă autentică publicată, fără menţionarea provenienţei şi însuşirea acestora într-o lucrare ulterioară celei autentice. | | | 6. | Republicarea unei opere anterioare publicate, prin includerea unui nou autor sau de noi autori fără contribuţie explicită în lista de autori | ✓ | | 7. | Republicarea unei opere anterioare publicate, prin excluderea unui autor sau a unor autori din lista iniţială de autori. | ✓ | | 8. | Preluarea identică de pasaje (piese de creaţie) dintr-o operă autentică publicată, fără precizarea întinderii şi menţionarea provenienţei, fără nici o intervenţie personală care să justifice exemplificarea sau critica prin aportul creator al autorului care preia şi însuşirea acestora într-o lucrare ulterioară celei autentice. | * | | 9. | Preluarea identică de figuri sau reprezentări grafice (piese de creație de tip grafic) dintr-o operă autentică publicată, fără menţionarea provenienţei, fără nici o intervenţie care să justifice exemplificarea sau critica prin aportul creator al autorului care preia şi însuşirea acestora într-o lucrare ulterioară celei autentice. | ~ | | 10. | Preluarea identică de tabele (piese de creație de tip structură de informație) dintr-o operă autentică publicată, fără menționarea provenienței, fără nici o intervenție care să justifice exemplificarea sau critica prin aportul creator al autorului care preia şi însuşirea acestora într-o lucrare ulterioară celei autentice. | | | 11. | Preluarea identică a unor fragmente de demonstrație sau de deducere a unor relații matematice care nu se justifică în regăsirea unei relații matematice finale necesare aplicării efective dintr-o operă autentică publicată, fără menționarea provenienței, fără nici o intervenție care să justifice exemplificarea sau critica prin aportul creator al autorului care preia și însușirea acestora într-o lucrare ulterioară celei autentice. | | | 12. | Preluarea identică a textului (piese de creație de tip text) unei lucrări publicate anterior sau simultan, cu același titlu sau cu titlu similar, de un același autor / un același grup de autori în publicații sau edituri diferite. | | | 13. | Preluarea identică de pasaje (piese de creație de tip text) ale unui cuvânt înainte sau ale unei prefețe care se referă la două opere, diferite, publicate în două momente diferite de timp. | | #### Notă: - a) Prin "proveniență" se înțelege informația din care se pot identifica cel puțin numele autorului / autorilor, titlul operei, anul apariției. - b) Plagiatul este definit prin textul legii1. "...plagiatul – expunerea într-o operă scrisă sau o comunicare orală, inclusiv în format electronic, a unor texte, idei, demonstrații, date, ipoteze, teorii, rezultate ori metode ştiințifice extrase din opere scrise, inclusiv în format electronic, ale altor autori, fără a menționa acest lucru şi fără a face trimitere la operele originale...". Tehnic, plagiatul are la bază conceptul de **piesă de creație** care²: "...este un element de comunicare prezentat în formă scrisă, ca text, imagine sau combinat, care posedă un subiect, o organizare sau o construcție logică și de argumentare care presupune niște premise, un raționament și o concluzie. Piesa de creație presupune în mod necesar o formă de exprimare specifică unei persoane. Piesa de creație se poate asocia cu întreaga operă autentică sau cu o parte a acesteia..." cu care se poate face identificarea operei plagiate sau suspicionate de plagiat3: - "...O operă de creație se găsește în poziția de operă plagiată sau operă suspicionată de plagiat în raport cu o altă operă considerată autentică dacă: - i) Cele două opere tratează același subiect sau subiecte înrudite. - ii) Opera autentică a fost făcută publică anterior operei suspicionate. - iii) Cele două opere conțin piese de creație identificabile comune care posedă, fiecare în parte, un subiect și o formă de prezentare bine definită - iv) Pentru piesele de creaţie comune, adică prezente în opera autentică şi în opera suspicionată, nu există o menţionare explicită a provenienţei. Menţionarea provenienţei se face printr-o citare care permite identificarea piesei de creaţie preluate din opera autentică. - Simpla menţionare a titlului unei opere autentice într-un capitol de bibliografie sau similar acestuia fără delimitarea întinderii preluării nu este de natură să evite punerea în discuţie a suspiciunii de plagiat. - vi) Piesele de creaţie preluate din opera autentică se utilizează la construcţii realizate prin juxtapunere fără ca acestea să fie tratate de autorul operei suspicionate prin poziţia sa explicită. - vii) In opera suspicionată se identifică un fir sau mai multe fire logice de argumentare şi tratare care leagă aceleaşi premise cu aceleaşi concluzii ca în opera autentică..." ¹ Legea nr. 206/2004 privind buna conduită în cercetarea științifică, dezvoltarea tehnologică și inovare, publicată în Monitorul Oficial al României, Partea I, nr. 505 din 4 iunie 2004 ² ISOC, D. Ghid de acţiune împotriva plagiatului: bună-conduită, prevenire, combatere. Cluj-Napoca: Ecou Transilvan, 2012. ³ ISOC, D. Prevenitor de plagiat. Cluj-Napoca: Ecou Transilvan, 2014. Thin Solid Films 516 (2008) 1558-1562 # Synthesis and properties of Ba(Zn_{1/3}Ta_{2/3})O₃ for microwave and millimeter wave applications A. Ioachim ^{a,*}, M.I. Toacsan ^a, M.G. Banciu ^a, L. Nedelcu ^a, C.A. Dutu ^a, A.V. Alexandu ^b, S. Antohe ^b, E. Andronescu ^c, S. Jinga ^c, P. Nita ^a National Institute of Materials Physics, Bucharest-Magurele, Rom ^b University of Bucharest, Romania ^c "Politehnica" University of Bucharest, Romania ^d METAV S.A, Bucharest, Romania Available online 3 April 2007 #### **Abstract** High dielectric materials have gained an important position in microwave ctronics by re cing the size and cost of components for a wide ZT) is an $A(B'B'')O_3$ type perovskite material, range of applications from mobile telephony to spatial communications. Bal $_{13}Ta_{2/3})O_{3}$ dielectric ma showing ultra high values of the quality factor Q. Ceramic-based P prepared by solid state reaction. The samples were structural and morphological characterization were performed by sintered at temperatures in the range 1400÷1600 °C for 4 h. Con using XRD, SEM and EDX analysis. The dielectric properties wer neasu microwave range (6÷7 GHz). An additional annealing at red at temperatures higher than 1500 °C, the permittivity values were 1400 °C for 10 h has improved some dielectric parameters. For sample obtained in the interval 30÷35 and almost do not ch er the annealing. The $Q \times f$ product substantially increases up to about at of the 135,000 GHz, exhibiting a low temperature coefficient quency (τ_f) in microwaves. The best parameters were obtained for the sonant samples sintered at 1600 °C with additional annuage. The values of the $Q \times f$ product recommend these materials for microwave and millimeter wave applications. © 2007 Elsevier B.V. All rights reserved Keywords: Tantalates; Thermal treatmer Micro cture; Microws dielectric properties; Very high quality factor #### 1. Introduction ramic plic are very promising Complex perovskites plicatins owing to their attracmaterials for high values of the quality tive proper llly the $(Zn_{1/3})$ compound (BZT) has potential for factor Q. ellite broadcasting at frequencies higher than 10 GHz and a very high Q dielectric resonators (DR) in mobile phone bas tations or combiner filter for PCS applications [1]. The BZY ceramics exhibit a dielectric constant of 29, a $Q \times f$ product of 100,000 ÷ 160,000 GHz and a low temperature coefficient of resonant frequency τ_f close to zero in the presence of such additives as strontium-gallium [2]. The long range ordering (LRO) of cations, zinc oxide evaporation, point defects and stabilization of microdomain boundaries have been considered to be the factors which influence the Q values of such perovskites as $Ba(M_{1/3}^{2+}Ta_{2/3}^{5+})O_3$ with M=Mg, Zn [2,3]. The high Q values were explained from the point of view of the lattice vibrations of its trigonal superstructure. Sagala and Namb [4] calculated the dielectric loss tangent at microwave frequencies from the equation of ion motions, which was a function of B-site ordering. Galasso and co-workers [5] concluded that the B-site ordering increased as the difference in charge and size between B' and B" atoms increased. The ordering of complex perovskite BZT is important because the 1:2 ordering of the B' and B" cations along the <111> axis is believed to be closely related to the high-Q property of BZT. There is a strong correlation between the cation ordering degree, domain growth, zinc loss and sintering parameters. The synthesis of a BZT material, its structural and morphologic characteristics as well as its microwave dielectric properties correlated to the thermal treatments parameters are reported. ^{*} Corresponding author. Tel.: +40 21 4930047/123; fax: +40 21 4930267. *E-mail address*: ioachim@infim.ro (A. Ioachim). #### 2. Experimental Ceramics with molar formula $Ba(Zn_{1/3}Ta_{2/3})O_3$ were prepared by solid-state reaction. The starting materials were $BaCO_3$, ZnO and Ta_2O_5 . Stoichiometric quantities were weighted, ground, homogenized and milled in an agate mill in water for 2 h. The powders were calcined at T=925 °C for 2 h. Then the powders were milled for 2 h and calcined at 1000 °C/ 2 h. The triple calcined powders were mixed with 1% polyvinyl alcohol (PVA) and dried at T=80 °C, then were pressed into cylindrical samples of 12 mm diameter and 10 mm height. The pellets were slowly dried at 80 °C in order to eliminate the PVA. The third calcination was carried out at T=1150 °C/2.5 h, in air. The density of green ceramics was ρ =4400 kg/m³. The sintering treatment for the BZT samples was performed in air for 4 h at five temperature values: 1400 °C, 1450 °C, 1500 °C, 1525 °C and 1600 °C. In order to increase the dielectric properties, especially the quality factor Q, the samples were treated supplementary for 10 h at 1400 °C. The pellets were polished in order to remove the superficial zone and to obtain correct values of the microwave dielectric parameters. The relative bulk density of sintered disks was measured by the Archimedes method. Morphological, structural and compositional analyses were performed on 5 sets of samples by X-ray diffraction (XRD) analysis and electron microscopy (SEM, EDX). The patterns were recorded in a 2θ range from 2 (2.2) 90° on a Seifert Debye Flex 2002 diffractometer into the $2-\theta$ mode. Measurements were performed at room temperature using Cu K_{α} radiation, Ni filter and a detector state of γ min. The dielectric parameters, i.e. the dielectric constants, the quality factor Q and the loss tangent an object measured in the microwave range by Hakki–Coman measured. A computer aided measurement system containing an HP of 7 C scalar network analyzer and an Hi. 8350 as sweep oscillator was employed. #### 3. Results and discussion The bulk density of a fired B7 ceramics was measured after grinding and colishin. The temperature dependence of densifier on after 4 h sintering in air is shown in Fig. 1. Fig. 1. Bulk density versus sintering temperature for BZT samples. Fig. 2. XRD patterns of Ba(Zn_{1/3}Ta_{2/3})O₃ system versus sintering temperature. BZT ceramics sintered between 1500 °C and 1600 °C were well sintered. The X-ray density of Ba($Zn_{1/3}Ta_{2/3}$)O₃ compound was considered as ρ_t =7920 kg/m³ [6]. The most dense ceramics exhibit a porosity value of 10%. An abnormal grain growth together with an accentuated ZnO evaporation occurred above the sintering temperature T_s =1525 °C, so the bulk density slightly decreased. Above T_s =1525 °C, the bulk density continued to increase. The crystal structure of $Ba(Zn_{1/3}Ta_{2/3})O_3$ is the structure of a classic ordered perovskite with two transition metals (B' and B") on the octahedral site. The B' and B" ions occur on alternating (111) planes in a 1:2 ratio. Each (111) plane contains only one type of small oxygen octahedron, and the planes are ordered in the 1:2 stoichiometric ratio, in the sequence Zn-Ta-Ta-Ta-Ta-Ta-.... The resulting symmetry, due to the (111) type plane stacking and accompanying small oxygen displacement strongly, depends on processing parameters. Consequently, the ordering of Zn and Ta depends of firing temperature and of the sintering time. The BZT samples sintered at low temperatures ($T_s < 1300$ °C) exhibit a pseudocubic perovskite type structure where Zn and Ta cations are in disorder. At higher sintering temperatures ($T_s > 1300$ °C), BZT presents a hexagonal structure, with Zn and Ta ions showing 1:2 order in the B site. The order of Zn and Ta cations expands the original perovskite unit cell along the <111> axis and contracts the unit cell in the (111) plane. Consequently, c/a ratio has a value greater than $\sqrt{3/2} \approx 1.2247$ and the unit cell is distorted. The increase of cation ordering on B site in BZT compounds creates a superlattice with a trigonal supercell. The degree of long range-structural order (LRO) can be evaluated by X-ray methods and it can be expressed as the ratio between the intensity of the super structure reflection peak and that of a basic unit cell reflection peak. The X-ray diffraction patterns for BZT compound, sintered at five sintering temperatures, using Cu K_{\alpha} radiation are given in Fig. 2. The patterns confirm the formation of the hexagonal structure, which is the majority phase. For the BZT compounds sintered at $T_s = 1525$ °C the patterns reveal the presence of secondary phases Ba₇Ta₆O₂₂, Ba₈ZnTa₂₄ and BaO, which disappear at higher sintering temperatures. The superlattice peaks at $2\theta = 17.6^{\circ}$ and 26.4° increase in intensity with the increase of T_s up to 1525 °C. At T_s =1600 °C they practically disappear. For temperatures up to 1525 °C, the LRO gradually increases with the temperature increase. The perfectly ordered structure is produced by the following process: (a) the perovskite-type structure is formed, but Zn and Ta cations are in disorder; (b) Zn and Ta cations are partially in order; and (c) Zn and Ta cations are completely in order and the lattice is distorted. At high sintering temperatures, ZnO evaporates, thus a supplementary distortion can be produced by the ZnO loss. The Zn^{2+} ions on B'-site are partially replaced by Ba^{2+} , which ha much larger ionic radius of 0.161 nm comparatively to 0.074 nm Fig. 3. Micrographs of the BZT sample sintered 1500 $^{\circ}$ C/4 h: (A) general view; (B) detail. general view; (B) detail. for Zn cations. This substitution creates a supplementary unit cell distortion, even when the LRO is saturated and leads to an increase of Q. The microstructure of BZT ceramics sintered in air at 1500 °C/ 4h and 1600 °C/4 h was investigated by using SEM. The images are presented in Figs. 3 and 4. The BZT samples sintered at $T_s > 1500$ °C present grains with concentric ordered shells. BZT samples have a large porous structure due to ZnO evaporation during the sintering process. In Fig. 3, micrographs of the sample sintered in air at 1500 °C/4 h are presented. The SEM image in Fig. 3A reveals an extended inter-aggregates porosity, with pore size in the range $(10 \div 30)$ µm. In addition, few small pores with sizes between 3 and 5 µm are located between grains. Submicron pores appear only on the grain surfaces. The large grains of a polyhedral shape, well faceted and with sizes in the range (50-100) μm, are present in all the samples. Micron grains are located on the grain boundaries or on the grain surfaces; some grains with size in the range 3÷6 μm are polyhedral with rounded corners and not well faceted and others are spherical with sizes up to 1.5 µm. The SEM image of the central zone of BZT sample sintered at 1600 °C for 4 h is shown in Fig. 4. In this case, the porous structure is reduced comparatively with the samples sintered at 1500 °C. The large pores disappear. There are inter-aggregates pores with sizes between 5 and 10 μ m and smaller ones with sizes (1÷3) μ m located between three or four grains. Fig. 5. Dielectric properties versus sintering temperature for BZT samples without annealing. The micrograph presents a bimodal distribution of the grains size. Well-faceted polyhedral grains with smooth surfaces and edges and dimensions in the range $(30 \div 80)$ µm are present. The abnormal granular growth together with the ZnO evaporation can explain the non-monotonic variation of the BZT bulk density with T_s , for $T_s > 1500$ °C. The relatively small difference between 1500 °C and 1600 °C sintering temperatures has as effect a strong granular growth, as can be noticed in Figs. 3B and 4B. We used microanalysis (EDX) in an attempt to examine whether a composition trend such as a "paucity" of the 3' element could explain the correlation between the attructual long range ordering and dielectric properties are BZT ylinders sintered at 1600 °C exhibit two differents thes: a control axial light-colored zone and a peripheral disk-control zone. In the outer zone, where the ZnO evaporation is more assible, the Zn atomic concentration indicates the astocichiometric composition. On the other hand, the experimental data indicate a variation of Ba²⁺ content year higher concentration at the sample boundary. In this case, It is an enter on the use Zn-octahedron sites, producing a symplemental deformation of the unit cell. Microwave measurer on dielectric constant and loss tangent were corried out the BZT amples. The obtained data Fig. 6. Dielectric properties versus sintering temperature for annealed BZT samples. Fig. 7. Quality factor normal at at 10 GHz versus single ag temperature for BZT samples with and with at annealing revealed a description influence of the sintering temperature on the complex dies tric constant, the variation of the dielectric constant and dielectric loss with the sintering temperature can be accorded in Fig. 5. This can be considered as an effect of the rauced porosity resulting in a better densification at high intering temperatures, as can be seen in Fig. 1. ntering temperatures, as can be seen in Fig. 1. The loss tan and exhibits values around 2×10^{-4} for samples six red at 140 °C and 1450 °C. With the sintering temperature dielectric loss tangent increases up to 7×10^{-4} for 1500 °C, then decreases down to 2×10^{-4} for $T_s = 1600$ °C, as can be noticed in Fig. 5. This variation could be related to the Zn and Ta cation ordering process and with the secondary phases, which appear for sintering temperatures between 1450 °C and 1525 °C as shown in Fig. 2. For temperatures higher than 1525 °C, these phases disappear and, consequently, the dielectric loss became lower. The additional thermal treatment at 1400 °C for 10 h for all the samples resulted in the reduction of the BZT dielectric loss as can be seen in Fig. 6. For annealed samples, the dielectric loss continuously decreases with the increase of the sintering temperature. The dielectric constant values were not substantially modified by the annealing treatment, with only one exception of the BZT samples sintered at 1600 °C. The quality factor Q values normalized at 10 GHz for the BZT samples are presented in Fig. 7. The Q is higher for annealed samples than for the samples without thermal treatment; this difference is more significant especially for BZT samples sintered beyond 1525 °C, which indicate the necessity of post sintering thermal treatment. The BZT samples sintered at 1600 °C exhibit a dielectric constant of about 31, a temperature coefficient of resonance frequency τ_f between 3 and 7 ppm/°C and a quality factor normalized to 10 GHz up to 13,500. ## 4. Conclusions $Ba(Zn_{1/3}Ta_{2/3})O_3$ ceramics with low loss in microwave domain were obtained by solid state reaction in the temperature range $1400 \div 1600$ °C. The increase of the sintering temperature leads to a normal granular growth, with a polyhedral grains size development. For sintering temperatures higher then 1500 $^{\circ}$ C, the XRD patterns reveal the BZT multiphase compositions with the presence of trigonal supercell peaks and low Zn content secondary phases. The last two disappear at temperatures higher than $1600 \, ^{\circ}$ C. The investigations on dielectric properties revealed that the increase of the sintering temperature decreases the dielectric loss especially when an annealing of 10 h at 1400 $^{\circ}$ C is performed. The quality factor Q strongly depends on the BZT crystalline structure, that is on the unit cell distortion and cationic order. Dielectric loss decreases with the increase of ordering degree in the structure and with the disappearance of secondary phases. Lowest loss is obtained for a Zn and Ta completely ordered BZT ceramic with a strongly distorted unit cell. Porosity has small effect on dielectric loss of BZT material. Well-sintered and annealed BZT samples exhibit a dielectric constant around 31, a $Q \times f$ product up to 135,000 GHz and a temperature coefficient of resonance frequency τ_f between 3 and 7 ppm/°C, similar to literature data. The achieved very high quality factor Q and small τ_f recommend the BZT materials for such microwave and millimeter wave applications as resonators and filters for wireless communication systems. #### Acknowledgments This work was supported by Ministry of Education and Research under contract CEEX no. 4/2005. #### References - [1] S. Desu, H.M. O'Bryan, J. Am. Ceram. 68 (1985) 546 - [2] I.M. Reaney, P.L. Wise, I. Qazi, C. Mille, M. Price, D.S. Innell, D.M. Iddles, M.J. Rosseinky, S.M. Massa, M. Biet, ver, L.D. Joailles, R.M. Ibberson, J. Eur. Ceram. Soc. 5 (2003) 2021. - [3] A. Ioachim, M.I. Toacsar and G. Bano, C. Nedelcu, A. Dutu, M. Feder, C. Plapcianu, F. Lifei P. N. J. Frederam. Soc. 27 (2007) 1117. - [4] D.A. Sagala, S. N. Ju, J. An. Fram. Soc. 7 (1992) 2573. - [5] F. Gallasso, J. P. , Inorg. Chem. (1983) - [6] F. Roulland Theor. S. Marinel, N. Sci. Eng., B, Solid-State Mater. Adv. Technol. 104 (2008) 156.