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ABSTRACT 

Tolerance, representing a permissible variation of a dimension in an engineering 

drawing, is synthesized by considering assembly stack-up conditions based on 

manufacturing cost minimization. A random variable and its standard deviation are 

associated with a dimension and its tolerance. This probabilistic approach makes it 

possible to perform trade-off between performance and tolerance rather than worst case 

analysis as it is commonly practiced. Tolerance (stack-up) analysis, as an inner loop in the 

overall algorithm for tolerance synthesis, is performed by approximating the volume under 

the multivariate probability density function constrained by nonlinear stack-up conditions 

with a convex polytope. This approximation makes use of the notion of reliability index 

[10] in structural safety. Consequently, the probabilistic optimization problem for 

tolerance synthesis is simplified into a deterministic nonlinear programming problem. An 

algorithm is then developed and i!!! proven to converge to the global optimum through an 

investigation of the monotonic relations among tolerance, the reliability index, and cost. 

Examples from the implementation of the algorithm are given. 
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1. INTRODUCTION 

Dimensions in engineering drawings specify ideal geometry for size, location, and 

form [1,2]. Since dimensions are subject to variability inherent in the manufacturing 

process, some variations, such as ± 0.001, from the nominal' value are allowed. The 

permissible amount, in this example 0.002, is called tolerance. 

As a design variable, tolerance should be as near zero as possible. But, because of 

practical considerations such as an increase in cost, tolerance as a manufacturing variable 

is often larger than ideal. While larger tolerances are less costly to realize, they are 

usually associated with poor performance. This trade-off between specification and 

realization illustrates the traditional conflict between design and manufacturing. 

As a design-manufacturing variable, tolerance has more than a local effect in the 

decision process. Parts are "in-spec" if they are functionally equivalent and 

interchangeable in assembly. Even though individual tolerances are in-spec, the sum of 

the individual tolerances in an assembly may not be. For example, in Figure 1, suppose 

the dimension D consists of nominal dimensions A, B, and C with tolerances of i a, i b, 

and· ie, respectively. Now, the variations a, b, and c represent the worst case for the 

components. Does the entire assembly whose nominal dimension is D need a tolerance of 

±(a + b +c)? The study of the aggregate behavior of given individual variations is 

referred to as tolerance analysis or, more commonly, as stack-up analysis. In practice, a 

designer starts with some initial values for tolerances. If the result of the analysis turns 

out to be "out-of-spec," the designer reassigns some of the tolerances and iterates the 

analysis procedure. The process of deciding which tolerances are to be changed and by 

how much, is referred to as tolerance distribution. When performed manually, tolerance 

distribution is often guided by experience. Without a rigorous procedure, it is difficult to 

ensure that local changes in tolerances reflect global criteria such as functionality and cost. 

Distributing tolerances such that the result of tolerance analysis is reflected is referred to 
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as tolerance synthesis. This paper presents the development of such a procedure. 

< Insert Figure 1 > 

Tolerance synthesis is formulated here as an optimization problem by treating cost 

minimization as the objective function and the stack-up conditions as the constraints. 

Probabilistic concepts are used. Since tolerance implies randomness, a random variable 

and its standard deviation are associated with a dimension and its tolerance. Such a 

probabilistic approach enables the partial satisfaction of the stack-up conditions. By 

permitting a small fraction of the assemblies, say 0.3%, to be out-of-spec, an increase in 

tolerances may be obtained and in turn a reduction in cost may be achieved. This 

probabilistic approach is considered to be advantageous over the deterministic approach. 

Since the deterministic approach [3,4,16] handles only the 100% in-spec case, the resulting 

tolerances are often more conservative than necessary. 

In the probabilistic approach, tolerance analysis involves computing the probability 

of satisfying the stack-up conditions, given the standard deviations (tolerances). Suppose 

an inequality F(X) ~ 0 represents a certain stack-up condition, where X is a random 

vector composed of dimensions. The probability of satisfying this stack-up condition, i.e., 

P(F(X) ~ 0), is then described by the following mUltiple integral: 

J F(X) ~ 0 fiX) dX (1) 

where fiX) is the multivariate probability density function (p.d.f.) for X. F(X), the function 

for stack-up condition, is nonlinear if non-rectangular shapes and/or angular dimensions 

are in an engineering drawing. Consider Figure 2 - (b). Suppose the vertical distance 

between points A and B is to be less than 5.2000. The stack-up condition is FiX)~O, 

where 

(2) 

The linear case [5,11,13,21] offers simplicity in representation and in processing. As 
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3. SIMPLIFICATION OF TOLERANCE ANALYSIS 

Tolerance analysis is to compute the yield P(RR) from a set of tolerances (standard 

deviations) that constitute the multivariate normal p.d.f. ¢(Xj V) in equation (4). The 

integration is to be taken in the reliable region ~ bounded by m + 2n functions. As an 

inner loop in the overall algorithm for tolerance synthesis (shown in Figure 3), tolerance 

analysis demands speed and accuracy. 

For speed, a two-step approximation of RR' illustrated in Figure 6, is taken: first as 

a convex polytope and then as an inscribed hypersphere. While the computational 

advantage of replacing m + 2n functions by m + 2n hyperplanes and subsequently by a 

single radius may be obvious, the locations at which linear approximation is to be taken 

may not be. For accuracy, the consideration of preserving the probabilistically densest 

area should be taken as illustrated by the column of figures on the right. Now, suppose 

RR has been suitably transformed such that the dimensions zi are independent and that 

they follow the standard normal distribution. Refer to Figure 7 and consider two 

expansion points for linearization, Zl * and Z2 *, with distances d1 and d2, respectively. 

Because of normality, the densest area is in the vicinity of the origin. Furthermore, the 
2 2 

density decreases exponentially in distance squared, i.e., (112,,") (e -d1 12 - e -d2 0

/2 ). It 

becomes clear then, by choosing the point Z* closest to the origin, as illustrated in Figure 

7 - (b), both speed and accuracy can be achieved. 

< Insert Figures 6 and 7 > 

The reliability index {3 is defined as the minimum distance from the origin to a limit-

state surface formed by a requirement function in an independent standardized coordinate 

system, called the standard system. (The transformation from the dependent vector space 

X to the standard system Z is explained in the Appendix.) The point Z* on the limit-state 

surface with the minimum distance to the origin is referred to as the design point. 

Linearization at the design point is performed by finding the tangent hyperplane in the 
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standard system. The requirement function G(Z) is thus linearized by the tangent 

* hyperplane L(Z*) at Z* such that ~ is approximated by By. The remainder of this 

section is devoted to the relations between P(Ra) and f3. 

Consider the simple case of only one requirement function. Because of the rotational 

symmetry in the standard system, the probability of covering one side of the tangent 

hyperplane can be computed from the univariate normal distribution. Hence, the 

* approximated yield P(~) only involves looking up the standard normal distribution table. 

Lemma 1. In the case of a single re9uirement function, P(~) can be approximated by 

(5) 

Note that, for a linear requirement function, P(~)= iJ!(f1). The accuracy of (5) depends on 

the curvature of the requirement function. As long as the radius of curvature at the 

design point is large compared to the reliability index, (5) has been shown to be quite 

accurate in most practical cases [14]. 

Now, consider the general case of multiple requirement functions. The 

* * approximated reliable region ~ after the linearization is always convex and P(RR) can be 

obtained by the following lemma: 

Lemma 2. The yield P(RR) is approximated after the linearization by: 

peR ) ~ peR:) = ,13m + 2n ..• Jf31 .J.(O· C ) dz ... dz 
R -"'R J- oo -00 'I' 'M 1 m+2n (6) 

where the correlation matrix of zj's, denoted by CM' is the correlation matrix of the safety 

margins M. [6]. 
J 

Bounds are useful since equation (6) cannot be evaluated for a general CM [6,7]. 
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7. SUMMARY 

This paper presents a unified procedure for tolerance synthesis by distributing 

tolerances so as to satisfy the stack.up conditions. As a global criterion, cost minimization 

is used. 

Probabilistic concepts for tolerance analysis and synthesis are introduced. In terms 

of dimensions and tolerances, areas of interest to manufacturing and to design are defined 

as tolerance region and safe region, respectively. The intersection of the two regions, i.e., 

the reliable region ~, is investigated in detail. 

Tolerance analysis for computing P(~) is expedited through an approximation of 

* * RR with a convex polytope RR' Bounds of P(~) is examined by using the reliability index 

/3. For the upper and lower bounds, the probabilistic optimization problem for tolerance 

synthesis is converted into two NLPs. Then, effort is devoted to developing an algorithm, 

which is an iterative method of ensuring convergence. 

This iterative method demonstrates the potential for automatic tolerance synthesis, 

especially for the general nonlinear case. The concepts in this paper contributes to the 

understanding of parameters in design, manufacturing, and assembly by investigating: 

(a) the relation between tolerance and nominal dimension, 

(b) the relation between tolerance and desired yield, and 

(c) the relation between tolerance and stack·up condition. 
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Figure 6. Approximation of RR 
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Figure 7. Reliability Index as Distance 
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