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Opera suspicionata (OS) Opera autentica (OA)
Suspicious work Authentic work
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Fisa intocmita pentru includerea suspiciunii in Indexul Operelor Plagiate Tn Roméania de la
Sheet drawn up for including the suspicion in the Index of Plagiarized Works in Romania at
www.plagiate.ro

Nota: Prin ,p.72:00” se intelege paragraful care se termina la finele pag.72. Notatia ,p.00:00” semnifica pana la ultima

pagina

a capitolului curent, in intregime de la punctul initial al preludrii.

Note: By ,p.72:00” one understands the text ending with the end of the page 72. By ,p.00:00” one understands the
taking over from the initial point till the last page of the current chapter, entirely.

B. Fisa de argumentare a calificarii de plagiat alaturata, fisa care la randul sau este

parte

a deciziei.
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Fisa de argumentare a calificarii

Nr. Descrierea situatiei care este incadraté drept plagiat Se

crt. confirmd

1. Preluarea identica a unor pasaje (piese de creatie de tip text) dintr-o opera autenticé publicata, fara precizarea intinderii si mentionarea v
provenientei si insusirea acestora intr-o lucrare ulterioara celei autentice.

2. Preluarea a unor pasaje (piese de creatie de tip text) dintr-o opera autentica publicata, care sunt rezumate ale unor opere anterioare operei
autentice, fara precizarea intinderii si mentionarea provenientei si insusirea acestora intr-o lucrare ulterioara celei autentice.

3. Preluarea identica a unor figuri (piese de creatie de tip grafic) dintr-o opera autentica publicata, fara mentionarea provenientei si insusirea v
acestora intr-o lucrare ulterioara celei autentice.

4. Preluarea identica a unor tabele (piese de creatie de tip structura de informatie) dintr-o opera autentica publicata, fara mentjonarea v
provenientei si insusirea acestora intr-o lucrare ulterioara celei autentice.

5. Republicarea unei opere anterioare publicate, prin includerea unui nou autor sau de noi autori fara contributie explicita in lista de autori

6. Republicarea unei opere anterioare publicate, prin excluderea unui autor sau a unor autori din lista inifjala de autori.

7. Preluarea identica de pasaje (piese de creatie) dintr-o opera autentica publicata, fara precizarea intinderii si mentionarea provenientei, fara
nici o interventie personala care sa justifice exemplificarea sau critica prin aportul creator al autorului care preia $i insusirea acestora intr-o v
lucrare ulterioara celei autentice.

8. Preluarea identica de figuri sau reprezentari grafice (piese de creatie de tip grafic) dintr-o opera autentica publicata, fara mentionarea
provenientei, fara nici o interventie care sa justifice exemplificarea sau critica prin aportul creator al autorului care preia si insusirea acestora 4
intr-o lucrare ulterioara celei autentice.

9. Preluarea identica de tabele (piese de creatje de tip structura de informatie) dintr-o opera autentica publicata, fara mentionarea provenientei,
fara nici o interventje care sa justifice exemplificarea sau critica prin aportul creator al autorului care preia si insusirea acestora intr-o lucrare v
ulterioard celei autentice.

10. Preluarea identica a unor fragmente de demonstratie sau de deducere a unor relatjii matematice care nu se justifica in regasirea unei relatji
matematice finale necesare aplicarii efective dintr-o opera autentica publicata, fara mentionarea provenientei, fara nici o interventie care sa
justifice exemplificarea sau critica prin aportul creator al autorului care preia si insusirea acestora intr-o lucrare ulterioara celei autentice.

1. Preluarea identica a textului (piese de creatie de tip text) unei lucrari publicate anterior sau simultan, cu acelasi titlu sau cu titlu similar, de un
acelasi autor / un acelasi grup de autori in publicatii sau edituri diferite.

12. Preluarea identica de pasaje (piese de creatje de tip text) ale unui cuvant inainte sau ale unei prefete care se refera la doua opere, diferite,
publicate in doud momente diferite de timp.

Nota:

a) Prin ,provenientd” se intelege informatia din care se pot identifica cel putin numele autorului / autorilor, titlul operei, anul aparitiei.

b) Plagiatul este definit prin textul legii'.

. --.plagiatul — expunerea intr-o opera scrisd sau o comunicare orald, inclusiv in format electronic, a unor texte, idei, demonstratii, date, ipoteze,
teorii, rezultate ori metode stiintifice extrase din opere scrise, inclusiv in format electronic, ale altor autori, fard a mentiona acest lucru i fard a
face trimitere la operele originale...".

Tehnic, plagiatul are la baza conceptul de piesa de creatie care?:

,-.-este un element de comunicare prezentat in forma scrisa, ca text, imagine sau combinat, care poseda un subiect, 0 organizare sau o
constructie logicd si de argumentare care presupune niste premise, un rationament si o concluzie. Piesa de creatie presupune in mod necesar
o formé de exprimare specifica unei persoane. Piesa de creafie se poate asocia cu intreaga operd autentica sau cu o parte a acesteia...”

cu care se poate face identificarea operei plagiate sau suspicionate de plagiat3:

,-.-0 operd de creatie se gaseste in pozitia de opera plagiatd sau opera suspicionata de plagiat in raport cu o alta opera considerata autenticd

daca:

i) Cele doua opere trateaza acelasi subiect sau subiecte inrudite.

ii) Opera autentica a fost facutd publica anterior operei suspicionate.

i) Cele doud opere contin piese de creatie identificabile comune care poseda, fiecare in parte, un subiect si o forma de prezentare bine
definita.

iv) Pentru piesele de creatie comune, adicd prezente in opera autenticd si in opera suspicionatd, nu existd o menfionare explicitd a
provenientei. Mentionarea provenientei se face printr-o citare care permite identificarea piesei de creatie preluate din opera autentica.

v) Simpla mentionare a titlului unei opere autentice intr-un capitol de bibliografie sau similar acestuia féra delimitarea intinderii preludrii
nu este de naturd sa evite punerea in discutie a suspiciunii de plagiat.

vi) Piesele de creatie preluate din opera autenticd se utilizeaza la constructii realizate prin juxtapunere fard ca acestea sé fie tratate de
autorul operei suspicionate prin pozitia sa explicita.

Vi) In opera suspicionata se identifica un fir sau mai multe fire logice de argumentare i tratare care leagd aceleasi premise cu aceleasi
concluzii ca in opera autentica...”

1 Legea nr. 206/2004 privind buna conduitd in cercetarea stiintifica, dezvoltarea tehnologica si inovare, publicatd in Monitorul Oficial al Roméniei, Partea |, nr. 505
din 4 iunie 2004

2|SOC, D. Ghid de actiune impotriva plagiatului: buna-conduita, prevenire, combatere. Cluj-Napoca: Ecou Transilvan, 2012.

31SOC, D. Prevenitor de plagiat. Cluj-Napoca: Ecou Transilvan, 2014.
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CHAPTER

Preprocessing

Be prepared,
—Molto af The Bov Sconts of America

Freprocessing is a very important part of any chemometrics dara amalvsis pro.
fect. It is so important that it is delineated 15 one of the "Six Habits of an Effec.
tive Chemometrician” (see Chapter 13 and is defined as any mathematical ma-
nipulation of the data prior 1o the primary analysis. Tt is wsed [ remove or
reduce irrelevant sources of variation (either random or svstematicd for which
the primary modeling ool may nat account. Keep in mind that preprocessing
changes the data which will either positively ar negatively influence the re
sults, “Being prepared” by applying the Appropriate preprocessing toolis) js
criticzl in order for the overall dar analvsis to be successfiyl,

Selecting the optimal PTeprocessing may require some itecation hepween
the primary analvsis and 1he preprocessing step, Although chis empirical ap-
proach is a common practice, it is best if the preprocessing tool is chiosen e
cause of a known chamcteristic of the data, For example, percent (ninsmission
spectrt are often linearized with TEEPECT [ concentration by converting them
to absorbance unirs,

In this chapter 2 number of Preprocessing tools e discussed, They are di-
vided into two basic tvpes depending on whether they aperte on sunples or
viriables. Sample preprocessing wols aperate on one smple dat o toe over all
variables. Vardable preprocessing wols operite on one vadable az 4 ime over
all samples. Therefore, if a sample &5 deleted from a dara set, variabie Prepro-
cessing calculations must be repeated, while the sample Preprocessing caley-
lations will not be affecred,

3.1 PREPROCESSING THE SAMPLES

The lirst set of preprocessing tols discussed wre those gt DpRente on i
simple. Table 3.1 lists the four methods diseyssed: nornulizing, weighting,
smouthing, and bascline corrections.| Normalizgion can Be wed woremove
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3.1 PREPROCESSING THE SAMFLES &

TABLE 3.1, Sample Preprocessing Tools

Method Use

Normalizing © Putsall the samples on the same scale by dividing by 2 constant
(e.g., removing variable injection volume in chromatepraphy).

Weighting Sample weighting gives some samples more influsnee on the
analysis than others (e.g., 2 weight of zeco eliminates o sampled,

Smoothing Reduces the amount of mndom variaden {naise).

Baseline corrections  Reduces systematic varation.

sample ta sample absolute variability (e.g., vadable injection volumes in chro-
matographyy while weighting emphasizes selected samples over others.
Smoothing is primarily used to reduce mndom noise wheress the other sample
preprocessing methods are used to remove svstematic vadations. Bascline fea-
tures can be removed using explicit models, dedvatives, or multiplicative scat-
Ler COrrection,

3.1.1 Mormalization

Nermalization of a sample vector is accomplished by dividing each variable oy
a4 constant. Different constants can be used and three are descrbed here

Mormalizing re unit area is dccomplished by dividing each element in the
vector by the “laorm,” The Lnorm of o vector is the sum of the absolure
value of all of the f entrics in the vector x, as shown in Equagion 3.1,

nvars

ALY = }xed 3
L-norm E--",.l {3
J=1

Normslizing o unit length is accomplished by dividing each clement in the
vector by the "2aorm.” The Zaoem s caleulated by mking the sguare root of
the sum of all the squared values in the vector, as shown in Eqpuition 3.2,

i ars

]
]
2-nunm = I.' Exf (30
Y |

Mormalizing so that the nuximun intensity s equal o 1 is accomplished oy
dividing cach element in the vector by the infinity norm, defined s the maxi-
mi (in absolute valued of the vector.

Murntlivition i performed in ooder B remove syestemalic varmion, wally
assuciuted with the totad amount of simasle, & common example of this is nor
nndizing, to the lamgest wde peak 0 buiss spectrometry (Mowe et al. 1951
[ 190 In chrommtography, normudization of the cntire chronuteenm w uai
arek s used oo remove the elfect of variable injection volume. Normalizing
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g PREPROCESSING

bt area is alse used in libeuy seurching in mass spectrometry (Howe cr ik
19581, p 229) and in two-component curve sesclution, (Tavwton and Sylvestre,
1971). '

Consider an example of chromatographic application with wo conmpo-
nents of interest, The raw chromatograms from mwa injeciions of rwo samples
are shown in Figure 3.1a. The chromatograms normalized to unit arca (1-
norny} displayed in Figure 3.15 demanstrie the elimination of injection val-
ume variations (i.c., the chromatograms from the sgme sample overly,

A sccond example of nocmalization comes from an application of near
infrared rellectnee spoectroscopy for sortng recycled plastic containers, Spec
trat of discarded containers were measured and patiern-recognition tools were
applicd in order 10 fcilitate the sorting (sce Sections 4.2.1.2 and 4.3,1.2).
Prior to applying the pattern-recognition tools, extensive preprocessing was
performed. Shown in Fipure 3.2 are spectet of the polyethylene samples (the
second derivative of the dutn hins already been taken for reasons discussed
Lieer). Due to variutions in the pathlength, the SpECtil Vi in intensity. Mor
oualizition to wnit area (dividing by the Lnvorm) reduces this pathlengoh varia-
tion (see Fig, 3.28). The specim overly more closely, especially in the 1750
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Figure 3.1. Chromatograms with the same relative concentrations of wa compo-

nents but with varying injection valumes. Resylis befare (a} and after (b) normaliza-
tizn ta unil area,
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3.1 PREPROCESSING THE SAMPLES 29
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Figure 3.2. Second derivative near-inlrared reflectance spectra of recycle polyethylh
ene containers belore (a) and atter (b) normalization 1o unil area. .

to 1800-nm reglon. The remainlng spectral differences are due 1o chemical
variations in the samples.

In summary, normalization reduces systematic variation in the data by divid-
ing by a constant. Depending on what variation is (o be removed, one normal-
ization constant may be more appropriate than another. Beware that normal-
fztion may remove important concentration information.

3.1.2 Sample Weighting

Sample weighting is accomplished by muldplying each elemem in a sample
vector by a constant. In this way, the influence a sample has on a mathemari-
cal medel can be manipulaed. Sample weighting is similar to normalization,
but the criteria for defining the constants differ. The weights can be any val-
ues, although weighting should only be applied when reliable information is
available about the relative impontance of some samples over others. For ex-
ample, the dita from a highly experienced analyst can be given more weight
than those of a trinee, Another use of weighting is to satisfy inherent assiop-
tions of the primary method of analysis (¢.g.. the assumption of homoscedastic
errors in lincar regression, Deaper and Smith, 1931).
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— PREPROCESSING

3.1.3  Smmothing

In ma]ytic:i]wlﬁmﬂsrry‘ it is assumed that a measured signal consists of the e sig-
nal plus s nolse, The amount and stoueture of the noise depends on the ex-
perment. fmoothing tools Csrmoothens) are used w mithematically reduce the mn.
dom noisewith the goal of increasing the signalto-noise rato. A basic assumption
made withfiese tools is that the noise s of higher frequency relative ta the signal
of interest. &tis the redundant information contained in adjacent variables that en-
ables smoafiers to separate the “tye” signal from the noise. Some sources of
noise contrute to the low-frequency signal, but they are often difficult to rmath-
ematically mmove withoye removing some of the chemical information of inter-
est. Baselinecorrection methods are used 1o remove these low-frequency signals,

Smoothing methods typically use 2 window which can be thought of as a
region of iffuence, All the points in the window are used to detcrnuine the
value at the center af the window, and therefore the window width direetly
affects the msulting smooth, Five methads for smoothing are discussed below,
Four of then use a window, but differ in how the peints in the window
“vote," Thedith method, Fourier smoothing, does not use 2 window,

3.1.31 MBAN SMOQTHER  As defined here, 1 mean smoother is used o de-
crease the mmber of viriahles in a saumple vecior. This may be needed i, for e
ample, the alculation speed must be increased, To begin, 2 window width (r)is
chosen and the mean of the fiest 1 points in the sample vector is calewlated. This
defines the fit entry in the mean smoathed vector, The second entrv is caley
lated as the mean of the # + 1 1o 20 points in the original sample vector. This
process is repeated for all elements in the eriginal vector. The resuliing smoathed
vector has aBector of # fewer clements, The mean smaoother with 3 reasonable
window widh i berer than contructing the vector by aking every rmth point be
cause the men ealeulation resulrs in signad averaging, Figure 3.3a displays a spec-
trim containng 800 variabies. In Figure 3,35, 2 mean smoother with 1 window
width of 208ms been applicd which has reduced the number of varables to 39,
The mean smoother always reduces the resolution; this is evidenced in Figure
3.30 by the lmination of the sharper features. Therefore, choosing an inappro-
prizte windes width may eliminate in portant formures in the data.

3.1.3.2 RUNNING MEAN SMOOTHER Running smoothers operate by
moving the window across the daa vector one clement rather than one win-
dow width @ma time as with the mean smoather described above, This resylts
in 1 smoothad vector that is the same (or almost the same) length as the origi-
nil sample veetor, Specifically for the minning mean smoother, the jth element
in the new sector is the mean of the ariginal data located in the window cen-
tered aroundthe jth element, These smoothers introduce features in the ends
of the samplevector and are termed “end effects.” For example, the first ele-
ment in the =ector is often deleted becouse it cannet be in the middle of 3
window, In fet (window size-1)/2 points on either end of the vector cannot
be smoothedin the same manner as the TEMBINing poaints.



Dorin
Polygon


3.1 PREPROCESSING THE SAMPLES 1
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Figure 3.2. Spectrum beflore (4) and after {b) applying a mean smeothar with a win-
dow widih of 20.

This smoother is ene way to improve the sipnabto-noise satio of che daa, as
shown in Figure 3.4. The original data has some visible mndom noise and 2
large spike. The mean smoother with a 3-point windew reduces the nomse sig-
nificantly, but does not remove the spike. With the largest window size (21
pointy, the spike 15 removed bue the shape of the peak has changed (Broader
and lower intensity). The apparent shift in the peak to lower varinble number
is due o the end effect (e, 10 points from each end of the sanple vector
have been cemoved).

3.1.2.3 RBUNNING MEDIAN SMOOTHES  The running median smoother is
similar to the maning mean smoother except the median is used insread of the
menn. The median is noc as sensitve o extreme poines as the mean (Hoagelin et
al,, 1983) and, therefore, the median smoother i very effective at removing
spikes from the dac, However, i is ool as elficient at filtedng noise, The mediin
smoother applied to the npw data presented in Figuee 3.4 i3 shown in Figure 3.5
Compare the 3.point window results in Figoures 3.4 and 3.5 The median
smonther removed the spike bettee thin the mean smoathee, but the laner mare
effectively reduced the noise. Because of the complementary notuee of the twa
approaches, 4 combinntion of minning mesn and nionning mediae smoothees
maty be approprinte for some dae ses,
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Figure 3.4. Results after applying a runming mean smogther with varying window
widlhs to a sample vector,

ST RUNNING FOLYNOMIAL SMOOTHER The minning polynomial
smoother differs from the running mean and median smoothers in that a Iowe-or-
der polynomia is fic o the points in the window, The Jth element in the
smoothed daa vectar is equal 1o the poiynonisl prc'dic[i-::ln at element 4. A conve
nient implementation of this Appesiich is that of Savitky and Golay (1964), An
example of a polynomial fit over ane windew width (13 points) is shown in Fig-
ure 3.5. The & in this window are used to caleulate the smoothed value in the
middle of the window. The solid line shows the second-order polynomial fie 1o
the datx, and the *X" is the smoothed value for data point 7,

Using the Sevisthy-Golay method resulrs in the elimination of (window Size-
1% points oo each end of the smnple vector, If this is unrccepmble, Gorry
has developed 2 method that does ot result in the climination of [oints
(Gorry, 1990, 19913, While this method preserves the original number of Vari-
ables, it ean inredyee abermnt features 1 the ends of the sample vectors (Hui
and Gratzl, 1996). Overall, the Gorry method is recommended and is used in
all subsequent discussions.
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3.1 PREPROCESSING THE SAMPLES 33

Data with spike Median smoath, 3 pt window
2 - . — 2 "
1.5 1.5¢
1k 1+
0.5 1 05
0 N 0 —
g 20 40 60 80 20 40 60 B0
i} Median smoath, 11 pt window Median smooth, 21 pt window
2 — — 2 - - - -
1.5 Jd5}
1 1t
05} 0.5
Op—" [ e— 03
20 &40 €0 BO 20 40 &0 B8O
Variable Number

Figure 3.5, Resulls afler applying a running median smoother with varying wirdaw
widths to the same data found in Figure 3.4,

As with all window-based smoothers, the choice of the windew size in
polynomial smeoothers is very important. Another decision to make for pohne-
mial smoothers is the order of the polynomial 1o be fit (Barak, 1993). Tvpi-
cally, a second- er third-order polynamial is used. An example of applyving 2
polynomial smoother is shown in Figure 3.7, where a second-order polynomial
is fit with window sizes of 7, 13, and 25 points. As the window size increases,
the noise is continually reduced. However, when the window is ton large,
sharp peaks may be removed and the remaining peaks distorted. This is
demonstrated in Figure 3.8 where a spectrum is shown before (solid) and after
{dashed) applying a 49-point second-order polynomial smoother,

For a given data set, the optimal window size and polynomial order depend
on the natuce of the data, OF primary importance is the width of the peaks rels
ative to the window width (e.g., choosing a window width 10 times the width
of a peak will most likely distort or climinate it). An approach to selecting a
reasonable window width and polynomial orderis to apply several combing
tions and evaluate the resulting preprocessed data and final resulrs.
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Figure 3.8, Polynomial fit with a window width of 12 points. The smoothed value of
data point 7 s shown as X,

25 pr. smooth
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Figure 3.7. Results aller applying a running polynemial smoother wilh varying win-
daw widths 1o a sample vector, (The ollsel was added for clarity. )
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1
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Figure 3.8. lMuslration of peak distortion when using a smoother with a loa-largs
window width (49 point). [(Solid—raw daia: dashad—smoothed data.)

3.1.5.5 FOURIER FILTER SMOCTHER Fourer filterdng can be used for
peneral smoothing or removal of specific frequency components, Both of these
are accomplished by Fourder trinsforming the signal, weighting the tmnsfonn
with an apedizition function, and back teansfanning tw the erigina unis.

With so many felds using Fourier amaivsis, the notation is varied and some.
times confiictng (Table 3.2 fists some of the nottion). Interestingly, the in-
fraced spectroscapy and mathematics notiton are completely opposite. Te
causy of his ambiguity, we will define column 3 in Table 3.2 as the
apadicirion domuin becavse this is where the apodization is always applicd
Fur lack of 4 better reem, we will refer (o coluwmn 2 as the time donain,

Genenil Fourier Rlier smootiing is accomplisied by using an apodizstion
function in the apodization domain, The inteeferogrant is multiplied by dhe
apodization function before trnsforming to the time domain, There are many
types of apodization functions (Griffichs and de Hasetl, 19867, pernps the
most simple being boxear apadization, One example of boxear apodization is
zerodng high-lrequency Fouder cocfficienes, Figure 3.9 displavs a dan vector
that is trmsfommed to the apodizaton domain in Figuee 3,98, The frst and Lst
30 poines of this interferogmm are set ta wers, as displayed in Figure 3.9 This
is tmnsformed back o the croigeal ueits, s shown by Figore 5% This lad
sample vector @5 more smooth than the originad vector beciuse the hisle
frequency companents e reotoved. Changing the number of Fouricr ot
cients thut are serocd in Figtee 390 vichls a ditferent result, Figures 3010 and
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TABLE 3.2. Fourier Analysis Notation

Tima Domain Apodization Damain
15 15 ————-——l
1 il
Typical 3
Graph 0.5
L] -
; -5
-ﬂ_j —1 5 [ 1 | S S —
o 50 0 150 [ 50 160 150
Chromutoprapoy Tine Fregquenty
FE=HMR Shaf Keluation time FLD
FTIR Frequency (e.g.. wavelengih, Paosition, timc, interferogram
FTMIR wavenumber)
Mathemnics Time Frequency

b hsplay the resulis of zeroing 70 coefficients rather than 50. This has pro-
duced a4 signgdcantly broadened peak and has introdueed artificts to the Dase.
line.

Fourier fikering can also be used to remove a specific frequency present in
the ¢at. Common exampies of this include removing baseline offsets (low fre-
quency) and 60 Hz line noise. Figure 3.1 1a displays a sample vector with a pe-
riodic featurc. After the Fourier transform has been applicd, this feature ap-
pears in the imerferogram as a single point at variable 100 (Figure 3.114).
Figure 3.11¢ ks this frequency zeroed, which when back transformed results
In smoothed data without the pedodic noisc (Figure 31140,

This conclades the discussion of smoothers; a summary with recommends-
tions is provided in Table 3.3,

3.1.4 Basekne Corrections

Besides highfrequency components (noise), the measured sigaal may also

contain low-frequency sources of variation that are not related to the chem- .

istry uader imvcstigation. In this book, these components are called bascline
fearures. These systematic vanations can be large relative to changes in the sig.
nal of interest and may dominate the analysis if not removed. They may also
vary randomir in intensity and shape from sample 1o sample. A number of ap-
proacies for reducing bascline features are discussed below,

3.1.4.1 EXFLCIT MODELING APPROACH Any sample vector ¢an be
written as a feaction of variable number (x),

r=fix) (33

g L r w4
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20 40 &0 30 100

Varmblz Namber
Figure 3.9, Example ol a Fourier smoolher with boxcar apodization (zeroing 50
paints on each end). (a) Original spectrum; (b) spectrum in apedization domain: (c)
first and last 50 points sel 0 zero; (d) after iranslormation back 1o original units.

I
120 120

cqual to the sum of the signal of interest plus some baseline
feature (if presear). The baseline can be approximated using a polynomial, as
shown in Equation 3.4

r=ftat ot Rat L @9

where £ is the signal of interest and the remainder of the equation approximates
the hascline feature, Hy postulating 2 model for the bascline (c.g., offsct, lincar,
polynomial), one can account for it dircetly by subteaction, For example, a sam-
e vector with an offset baseline leature Gie., 2 harizontal line) can be written 15

r=r+ g {3.5)
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2
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Intensity
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Figure 3.10. Example of a Fourier smoother with boxcar apodization (zeroing 70
points on eazh end). (a) Specirum in Figure 3.9 in apodizalion damain with lirst and
last 70 paints set 1o zerg; (b) afer ranstormation back 1o ariginal units.

1
| Ly 120 -0

In this case. the baseline can be removed by estimating @ and subtracting it
from the sample vector (r). This is illustrated in Figure 3.1 2a, where a series of
sample vecwrs with offset bascline features is plotted. The offset can be e
moved by mbtrmcting the intensity of 2 varable from all variables for each
sample vecter. The optimul varable is one that contting only bascline informa
tion (this is e in Equation 3,30 In this example, variable 60 is used to estimate
@, which is subtracted from all elements in the simple vector. The pre-
processed daa shown in Figure 3.12b now reveal two groups of samples
which were not appirent prier to prepracessing, Note also in Figure 3.130
that all sample vectors have zero intensity at variable 60. The averige intensity
of several baseline variables is often used to estimate a. This yiekds a beter ¢s-
timate of o =d reduces the amount of noise introduced into the sample vee-
1ors by the haseline subiteaction,

Another cample of explicic baseline modeling is presented in Figure 3015,
where the samnple vector contains a lincarly sloping bascline. This tvpe of base-
line Is encoentered in chromatsgmphy as well as spectroscopy. It can be due,
fur example. to solvent gradicnts in chromatography or wavelengthdependent
scantering inspectroscopy, Mathematically, this can be represented as

r=7f+a+pBx £3.0)
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Figure 3.11. Example of gliminiting a periodic noise componant in a sample vacio:
using a Fowrier smoather, (a) Chiginal spectrum with 60 Hz line noise; (b} spectrum

in apadization demain; (¢) spike at variable 100 sat 1o zere: /d) after transformation -
back 1o original units,

To remeove the biseline component, o line @5 estimated (aand B using two ue
more points that are assumed to conmin anly baseline informatan, The esti
oited line fur this example 35 shown as o dashed line in Figure 30030, To re-
maove the baseline feature, this line is subtected from the sample vectar ais
shown in Figure 3,130,

iher funetivns cun be estinsaed if the bascline Tas o more complex shape.
Regardless of the tuncton used e ey s o choose points for estnutine the
cocficients in Equation 3.4 {ee 3 . . . 3 that are only influenced by 1he
buseline. 11 the points are chosen poorly, 2 portion of the chemieal virdation
will be removed in addition w il Buseling.
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TABLE 3.3. Summary of Smoothing Tools
Melhod Summary and Recommendations

Mean Use this method 1o reduce the number of variakles, but beware
of the consequences af lower resolution. Tt is preferred over
simply taking cvery snh data point because of the signal aver
aging that resulis from caleulating the averages,

Running mean This methad works reasonably well for general smoothing. Use
il no berter smoothing methods are available,
Running modon Use for remeval of highfrequency spikes, Not as efficient as the

running mean smaother for noise reduetion,

Running polyoamial  Preferred method for noise reduction. The method of Gorry is
recommended because no truncation of data ocours,

Fougicr filiering Good method for general smoothing, but must sclect an
appropriate apadizstion fupction. Dest method for remaoving
speelfic periodic features in the maw data provided the corre-
sponding frequency(ies) can be identificd in the apodiztion
domain.

] l- (2}

o 20 0 40 s r
Wirialde Mumber

Figure 3.12. Data with a baseline offsel belore {a} and after (b) baseline correction
using lhe expist modaling approach,
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Figure 3.13. Data with a lingar baseling fealure before (&) and afler () baseline
correction using the explicit modeling asproach.

ItA2 UERIVATIVES Another way af removing bascline feaiures is to ke
derivatives with respect o variable number. Dy using this approach, it is nol
necessany to select points that only contain baseline infomuation. This is espe-
cially useful in cases where baseline points are difficult or impossible 1o idenify,

To see how the derivatives are able o remove baselinge featuces, refer back
to Equation 3.4. Taking the fiest derivative of the sample vector with respect
10 variable number () vields e,

b s L 1 O e S S I e

where £ is the derivative of the signal of interest, Equation 3.7 reveals thar the
first derivative s completely remaoved the offser feature Lk IF the bascline is
only comprised of an offser, the other coefficients in Equation 3.4 (and there-
{ore Equation 3.7) would be zero,

Ifa maore complex bascline is present (8.7 b, . . . #0) repeated applicas
tion of the derivicive will successively remove the higherorder terms, For ex-
ample, taking the derivative of Equation 3.7 yiclds

r”=|'*"+ﬂ+0+2’:f+'55x.'|‘ - (3.8
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Equation 3.8% equivalent to the second derivative of Equation 3.4 and the lin-
ear feature (mand B) has been completely removed.

Running Simple Difference

The simple &fference between adjacent data points can be used to estimate
the first dermative. For a sample vector r = [rye 1y . . . 1] the first derivative
can be estimwed as ¢’ = [r, = r,, r, = 1y, ., ., 7, = r, 1. This procedure can
be repeatedso estimate the second and successive derivatives, As an example,
Figure 3.14adisplays a noise-free Gaussian peak with a constant offset of one
unit and Figme 3,148 shows the dervative caleulated by simple difference.
The baseline has been removed (the region where there was no peak In the
raw data now has zero intensity), and as expected, the peak has the shape of
the derivativeof a Gaussian.

When nose is present. the simple difference approach for calculating a de-
rivative |5 nee effective. The difference calculation propagates crrors into the
derivative which degrades the signalto-noise. This & ihustrated in Figures
3.1%a and bwhere the same Gaussian peak with noise added and the simple
difference result are shown, respectively, It is clear that the signal-to-noise has
been decrezard by the preprocessing.

1 1
18 1. ]
fiat ]
5
=
1
1k
o1} ]
>
E 0
z
ol J
0 ﬂll‘l (WA (K]

Varahle Nuinbcr

Figure 3.14. Soise-free data with a baseline olfsel belore {2) and alter (&) baseline
correction usig a simple differance darivative,
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Figure 3.15. Resulis after applying three different derivative preprocessing tocls io
a sample veclor. (a) & sample vector with noisz and an offsat of one unit, (i) The
derivative calculated by simple ditlerence. (&) Tha derivative caloulaled Using 2 run-
ning mean differance with a window widih of 15, [2) The derivative calculated using
the Gorry mathad with a window width af 15.

Running Mean Difference

Bne win of improving the errocpropagation propertics of the simpale differ
ence method s to wse the ditference of means for e derivative ealeulios,
With the runming mean difference. 1 window widih is selected aod the differ
enge between means is tken instend of using the difference berween ndivid-
ual points. For example, using  window size of 3, the tirst derivative of the
sample vector r = Jivieny e # 1o e estinmeed as

=

L e e k et et
S B s {jl::l_‘:.
3 3

This resules in o smoothed derivitive coleulation fsee Section 3.1.3 for discus-
sion of smoothing). Figure 3.15¢ shows the result of applving @ running mean
dilferenee derivitive with o window wiclth of 15 10 e data in Figure 3.1 5,
The signal-to-nuise of this derivative is much betrer than the simple difference
derbvarive. (The apparent shift of the dedvative s due to the end effecns)
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The Methodsal Savitzky-Golay and Gorry

Anuother appmach to culeulating derivatives is bised on the Saviteky-Goliy
angd Gorry snoothing methods (see Section 3.1.3.4; Savitsky and Golay,
1964; and Gerry, 1990, 1991). Recall that these methods fit a simple polyno-
mial to a ruming loecal region of the sample vector. A window width is sc-
leeted and the point in the center of the window is replaced with the poly-
nomial estimate of that point. With the derivative, this point Is instead
replaced withthe derfvative of the polynomial at that point. Decause poly-
nomials are wsed, it is a simple mathematienl step 1o determine the derlva-
tive. As with smeothing, the contribution from Gorry was developing
method for teating the ends of the vector 5o as not to eliminate points. The
improvement in signal-te-noise achieved using the method of Gorry with a
window widh of 15 is demonstrated in Fipuee 3,15 for the first derivative
of the data iv Figure 3.15a. While the signakto-noise of the running mean
and the Gore methods are similar, we cccommend using the Gorry method
because fnim a polynomial preserves the peak shape better timn the rune
ning nein.

To show tie importance of smoothing. especially when caleubating higher-
order dedvatpes, Figures 3.16a-¢ show a samiple vector with a linear baseling,
a simple diffrence second derivative, and a second derivinive by the Gorry
method usingan 11-point window, respectively, Using the simple difference
method, propgation of error s more problematic when Calculating the sec-
ond derivatie compared to the first dedvative (compare Figures 3,150 and
3160} Thenfore, using a smoothed derivittlve method, such as Gorry's, Is
even more inportant for this and higherorder derivatives. (In Figure 3.16¢ the
Gorry methof has introduced aberram: feuures 1o the ends of the second de
rivarive. See dho Section 3.1,3.4)

A critical ennsideration when taking derivatives is the window width for
the polynomat fir. If the window sizc is too small, too little smoothing takes
place, resulting in derivatives with poor signalto-noise, If the window size is
oo Lirge, feanres will be smoothed out, The optimal windaw size depends on
the data, beeuse smoothing away features may or may not be detrimental 1o
the primary asalysis. The noisc level, *he number of data points, and the sharp-
ness of the fartures should all be considered wlhien seleeting a window width,
The sample wetor shown in Figure 3.17 is wsed 10 demonsteie the effect of
differing windnw widths. The first derivative results are shown in Figure 3.18.
Using a windiw width of three results in 2 derivitive with poorer signal-to-
noise than theoriginal data. As the window width is increased to 21, the slg:
nakto-noise inproves, but the peak at variable 55 has been smoothed away.,
The effect of fie window width on the second derivative results in Figure 3.19
5 even moredramatic, It s not possibie to muke a gencral statement as (o
which of the window widihs is best. In practice, the primary analysis is pe-
peated with verl window widths to determine which viclds the best re.
sults,
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