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THERMOELASTIC INSTABILITY IN A SEAL-LIKE CONFIGURATION

R. A. BURTON, V. NERLIKAR and S. R. KILAPARTI
Northwestern University, Evanston, Ill. 60201 (U.S.A.)
(Received December 21, 1972)

SUMMARY

For the geometry of two flat plates contacting on a straight common edge
with sliding parallel to the line of contact, conditions are found where pressure
perturbations on the interface will grow, diminish or remain unchanged. The effects
of materials properties, friction coefficient, and sliding speed are delineated. Con-
ditions which lead to a growing disturbance may be thought of as undesirable in
that they lead to locally increased contact loading as well as locally increased
temperatures. Adjacent to the regions of increased pressure are regions of reduced
pressure where the surfaces may part, and give rise to leakage when the line of
contact is considered to represent the lip of a seal.

It is shown that materials sliding on their own kind tend to be stable relative
to this phenomenon, while good thermal conductors sliding on good thermal
insulators must always have some characteristic sliding speed above which instability
will occur.

NOMENCLATURE

surface area

velocity of a disturbance
specific heat

Young’s Modulus

mechanical equivalent of heat
conductivity of material
diffusivity of material (K/pc,)
Iength of slider

half width of contact spot
mass of pin

load A

pressure distribution
constant for heat transfer from pin
temperature

time

sliding velocity

wear coefficient
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width of slider

coefficient of thermal expansion
(i=1, 2, 3...) coeflicient in equation
dimensionless exponential coefficient of time
thickness of thermal boundary layer
strain

thickness of insulating film
coefficient of friction

Poisson’s ratio

exponential coefficient of time

wave number =2nn/L

TN M ™R R N

g a =

INTRODUCTION

High speed rubbing contact is known to be associated with macroscopic
instabilities in which pressure disturbances appear in nominally flat and uniform
contact zones' 2, These may lead to adverse effects upon temperature and wear of
the surfaces involved. One configuration subject to such disturbances is the class of
seal where a lip is pressed against a second surface, and sliding takes place along
the direction of the line of contact (Fig. 1). Such a configuration is the subject of the
investigation reported here.

To permit a direct analysis without too great a departure from a realistic
configuration, the geometry to be investigated will be treated as two straight blades
lying on a single plane and contacting along a straight common edge or interface.
Sliding would take place parallel to the line of contact. This may be thought of as
having been developed geometrically from a seal consisting of two cylindrical tubes,

Fig. L. Illustration of the geometry of thin tubes contacting end to end with sliding along the line of
contact.
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concentric and of the same diameter, turning steadily relative to one another about
the common axis, and contacting along a flat interface which is perpendicular to the
axis.

For such a geometry, if pressure is uniform along the interface, temperature
will rise smoothly to a steady state value determined by distant boundary con-
ditions. If the uniform pressure distribution is perturbed by a weak disturbance (which
may beexpressed ina Fourier series of waves along the contact surface) the disturbance
may be damped out, may remain unchanged, or may grow. Hence the stability of
the pressure distribution may be investigated in terms of the behavior of the com-
ponent waves contained in the initial disturbance.

As posed here the problem is a linear one, with the assumptions of linear heat
transfer, thermal expansion and elastic displacement. In its idealized form using flat
plates, the problem is dealt with as follows:

(1) The solution is found for the pressure wave produced at the edge of a
semi-infinite plate when there is a fixed amplitude temperature wave moving at
constant velocity along its edge. '

(2) The relation is found between this pressure wave and the frictional heat
generation at the boundary, where it is assumed that a second plate is sliding along
the edge and shares the pressure distribution.

(3) Through the use of heat transfer relationships at the interface the heat
generated is related to the postulated temperature distribution.

An additional restriction of the disturbance waves will be that there is no
discontinuity at the “ends” of a distance corresponding to one circumference of
the corresponding tubes from which the plates are developed. That is, the com-
ponent harmonics of the disturbance must complete one or more whole numbers of
cycles over the specified length. The combinations of materials properties and
operating conditions which compatibly satisfy this full set of conditions may be
considered to define the circumstances for a disturbance of the specified wave length
to exist without damping or amplification. Broader considerations show such a
condition to reside on the boundary between the damped (stable) and amplified
(unstable) conditions of operation®.

SOLUTION FOR A STEADILY MOVING TEMPERATURE WAVE

With reference to one plate, designated as No. 1, a temperature disturbance
on the edge may be postulated according to:

T =T, sin w(x—ct) (0

where T, is constant, @ is a measure of wavenumber, x is measured along the edge
of the plate, and c is the steady traversal velocity of the wave along the edge of the
plate.

For the heat equation

T 8T 18T

= b= — =0 —0 < x< )

dx oy

0<y<w

with the additional boundary conditions T=0 as y-»co. Here y is measured normal


Dorin
Polygon

Dorin
Polygon


180 R. A. BURTON, V. NERLIKAR, S. R. KILAPARTI

to the edge pf the plate. The solution within body No. 1 can be shown to be
T, = Toe ™" sin{wx—weyt+ayy) 3)

where

e[g o3l (1]
e[ 55l ()]

The unit heat flux (g,) into the surface of the designated body is given by:

g=—-kK <%§)y;=0: —KT,[a, cos(wx—wmcyt)~by sin(wx—wcyt)] (6)
If the frame of reference is shifted so that the wave is stationary and the surface is
moving relative to it, the surface temperature will be

T =T, sin wx (7)
and

g1 = K, Ty[b, sin wx—a, cos wx] (8)

When a corresponding analysis is carried out for body No. 2 (moving in the
opposite direction relative to the temperature wave with velocity c,) it is found that,
using the plate as a frame of reference:

T, = Toe 222 sin(wx—weyt—a, p) (9)
where a, and b, correspond to eqns. (4) and (5) with the appropriate changes of
subscripts. From this it follows that

oT, .
g, = —K, <a—y—2) = K, Ty[ — a, cos(wx +wc,t)— b, sin(wx + wc, )] (10)
2/ y—0
Shifting the frame of reference so that the wave is stationary, and the plate is moving
relative to it:

g, = K, Ty[b, sin wx +a, cos wx] (1)
Adding the heat flows into the two surfaces at corresponding points along the wave,

et = G1 +42 = To {(K;b; +K;3b,) sin ox+(K,a, — Ky a;) cos wx} (12)

THERMOELASTIC STRESS IN A PLATE SUBJECT TO A STEADILY MOVING TEMPERA-
TURE WAVE

For a plate one may write the thermoelastic equation in terms of displace-
ment potential, ¥, as follows*:
Ak el 4

= aF Fra (1+v)aT,e™™ sin (wk +ay—wct) (13)

ox?

This is in the frame of reference on the temperature wave, and neglects inertial
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effects. Letting surface displacement v in the y direction be zero (v],~,=0), and
¥ -0 as y— oo, recognizing 0¥/dy=v, it is found that ¥ is given by an equation of
the type

. k
¥, = (4e~“")(C cos wx+ D sin wx) + Ec—!l-) (1+vy)oy Toe ™ cos(wx+a, y)

(14)
The coefficients C and D are evaluated to satisfy the boundary conditions.
It follows from this that the surface pressure p) on body No. 1, with the
surface held flat, would be:
_ E o Tok,
= o

’

[~(w—by)cos wx+a, sin wx] (15)

A corresponding equation can be written for body No. 2 with the appropriate change
of subscripts. When the two bodies are brought together and the constraint on the
boundary is relaxed each surface will undergo an equal and opposite displacement
until the stresses are equal. For a sine wave distribution of displacement it is known!
that p” = Ewd/2, where d =4, sin wx. Hence for body No. 1:

Eywé ,
p=——5—=p+p (16)
and for body No. 2:
E;wé ,
p=+——=py+p (17)

2

Recognizing that for equilibrium p must be identical on both bodies, consequently
o may be eliminated, and one will find

- E\E, Ty I:{“zkz (0=b,) _ ok (w“bl)}cos e o
El +E2 Cy Cq
{azkzaz i kia‘} sin wx} (18)
Ca Cy

For equilibrium (stability) heat generated by friction must equal heat conducted
from the interface. If:

Hp (cl + CZ) = Gnet (19)

(Klbl +K2b2)sin wx+(Kzaz4K1a1)COS wx =

HEE, [{“2"2(‘”“%) _ oy ky (w—b1)}
(c1+¢2) E,+E, % o cos wx +
+ 22k - Ky sin wx (20)

To satisfy eqn. (2) coefficients of sine and cosine terms should respectively be
equal on both sides of the equation. Hence:
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TABLE II

MAGNITUDE OF FRICTION COEFFICIENT REQUIRED FOR SELECTED MATERIALS TO
SATISFY EQN. (23)

Material Friction coefficient, u
Aluminum 2

Cast iron 295

Glass 33

Silicon carbide 6.4

SOLUTIONS FOR A CONDUCTING BODY SLIDING ON A NONCONDUCTOR

For this case k; »0, K; -0, since a non-conductor does not convect heat
Cz—’o, and Cl—)V. If V> 1,

. qw(_cl_)* g 2
! 2k, @ 2 2k,

b, s =1 )é b —»wli1+1(iz—>2]
1 2k, @ 2 8\ky0

Under these conditions eqn. (21) reduces to
2K, (E; +E,)
RE,E;a,

cG=V= (29)

As will be shown in the next section, this equation does serve as a good first
approximation to the numerical solution of eqns. (21) and (22) for real materials,
where one is a relatively poor conductor. Of interest at this point is the fact that
the likelihood of instability is much higher here than for materials sliding on their
own kind. Furthermore sliding speed plays a stronger role. For any friction coef-
ficient there is a sliding speed that satisfies eqn. (24). The usefulness of this equation
as an approximation is further illustrated by comparison with numerical solutions in
the paragraphs which follow. It is of interest also that this solution corresponds
closely to that of a conducting scraper on a non conducting drum for which the
dynamic as well as stationary case is treated in ref. 3.

NUMERICAL SOLUTIONS FOR EQNS. (22) AND (23)

To find simultaneous solutions for eqns. (22) and (23) each has been solved
individually for appropriate combinations of ¢, and c,, giving rise to curves on c;
versus ¢, plots. Intersections of these curves correspond to simultaneous solutions
of both equations. For trial computations high and low values of u were selected,
possibly outside the range of common practice, but usually within the realm of
possibility. Approximate scaling to other magnitudes may be guided by eqn. (24).
Materials properties were taken from Table I. The spatial periodicity » was allowed
to be unity, a realistic magnitude. Since velocity appears in conjunction with w as
¢/w, it is not difficult to scale to other values of w.
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(o]

Critical Velocity Ratio, ¢,/¢,

o
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Kp/ K for Aluminum
Fig. 4. Ratio of disturbance velocity in the insulator to disturbance velocity in the conductive body for
aluminum sliding on aluminum with hypothetically reduced conductivity.

10

an insulating film on one of the two surfaces. Such a film might be a natural oxide
or a protective coating which would rlduce the apparent conductivity of the material.
As an afterthought, Table V has been prepared showing how real insulators
compare in their performance with Al, of the same conductivity. Graphite is not
included since its low E makes it depart significantly for the other materials.

CONCLUSION

The above derivations serve to predict the conditions beyond which pressure
disturbances on the contacting lips of a seal will be amplified. This simplification can
lead to a concentration ofload on small portions of the surface with attendant damage
or it can lead to a parting of the surface when the negative lobe of the pressure
disturbance exceeds the magnitude of the initial uniform contact pressure holding the
surfaces together.

For materials contacting their own kind, instability would be seen only at
high values of friction coefficient. The magnitude of the uniform initial load has
litt?e influence except through its effect on overall temperature which, in turn, may
alter materials properties. The role of the sliding velocity is small, since even for
modest values of velocity the term in parentheses in eqn. (23) approaches unity. The
remaining term is normally below unity for the substances silicon carbide, aluminum
and cast iron, which span a broad range of properties among them. This would
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TABLE V

COMPARISON OF REAL MATERIALS SLID ON ALUMINUM WITH PREDICTIONS FOR
FIG. 6

Materials (K/K . )* u ¢, ¢ ** hypothetical
Al on Al 1 1 w0 0
Cast iron on Al 0.22 1 3 36
SiC on Al 0.08 i 1.72 1.9
Glass on Al 0.04 1 1.1 130
0.1 15 40

* K taken from Table L
** From Fig. 2 for given x and K /K,;.

enough in magnitude. Specific calculations for a number of materials combinations
support eqn. (24) as a useful first approximation for other pairs.

In reviewing these derivations it should be held in mind that they predict only
the threshold of instability. To fully understand the effects of such an instability,
however, additional considerations of the limits of growth of disturbance will be
required.
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