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THERMOPLASTIC INSTABILITY IN A SEAL-LIKE CONFIGURATION 

R. A. BURTON, V. NERLIKAR and S. R. KILAPARTI 

Northwestern University, Evanston, Ill. 60201 (U.S.A.) 

(Received December 21, 1972) 

SUMMARY 

For the geometry of two flat plates contacting on a straight common edge 
with sliding parallel to the line of contact, conditions are found where pressure 
perturbations on the interface will grow, diminish or remain unchanged. The effects 
of materials properties, friction coefficient, and sliding speed are delineated. Con- 
ditions which lead to a growing disturbance may be thought of as undesirable in 
that they lead to locally increased contact loading as well as locally increased 
temperatures. Adjacent to the regions of increased pressure are regions of reduced 
pressure where the surfaces may part, and give rise to leakage when the line of 
contact is considered to represent the lip of a seal. 

It is shown that materials sliding on their own kind tend to be stable relative 
to this phenomenon, while good thermal conductors sliding on good thermal 
insulators must always have some characteristic sliding speed above which instability 
will occur, 

NOMENCLATURE 
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surface area 
velocity of a dist~bance 
specific heat 
Young’s Modulus 
mechanical equivalent of heat 
conductivity of material 
diffusivity of material (K/PC,) 
length of slider 
half width of contact spot 
mass of pin 
load 
pressure distribution 
constant for heat transfer from pin 
temperature 
time 
sliding velocity 
wear coefficient 
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width of slider 
coefficient of thermal expansion 
(i = 1, 2, 3 . . .) coefficient in equation 
dimensionless exponential coefficient of time 
thickness of thermal boundary layer 
strain 
thickness of insulating film 
coefficient of friction 
Poisson’s ratio 
exponential coefficient of time 
wave number = 2tmJL 

INTRODUCTION 

High speed rubbing contact is known to be associated with macroscopic 
instabilities in which pressure disturbances appear in nominally flat and uniform 
contact zones192. These may lead to adverse effects upon temperature and wear of 
the surfaces involved. One configuration subject to such disturbances is the class of 
seal where a lip is pressed against a second surface, and sliding takes place along 
the direction of the line of contact (Fig. 1). Such a configuration is the subject of the 
investigation reported here. 

To permit a direct analysis without too great a departure from a realistic 
configuration, the geometry to be investigated will be treated as two straight blades 
lying on a single plane and contacting along a straight common edge or interface. 
Sliding would take place parallel to the line of contact. This may be thought of as 
having been developed geometrically from a seal consisting of two cylindrical tubes, 

Fig. 1. Illustration of the geometry of thin tubes contacting end to end with sliding along the line of 
contact. 
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concentric and of the same diameter, turning steadily relative to one another about 
the common axis, and contacting along a flat interface which is perpendicular to the 
axis. 

For such a geometry, if pressure is uniform along the interface, temperature 
will rise smoothly to a steady state value determined by distant boundary con- 
ditions. If the uniform pressure distribution is perturbed by a weak disturbance (which 
may be expressed ina Fourier series of waves along the contact surface) the disturbance 
may be damped out, may remain unchanged, or may grow. Hence the stability of 
the pressure distribution may be investigated in terms of the behavior of the com- 
ponent waves contained in the initial disturbance. 

As posed here the problem is a linear one, with the assumptions of linear heat 
transfer, thermal expansion and elastic displacement. In its idealized form using flat 
plates, the problem is dealt with as follows: 

(1) The solution is found for the pressure wave produced at the edge of a 
semi-in~nite plate when there is a fixed amplitude temperature wave moving at 
constant velocity along its edge. 

(2) The relation is found between this pressure wave and the frictional heat 
generation at the boundary, where it is assumed that a second plate is sliding along 
the edge and shares the pressure distribution. 

(3) Through the use of heat transfer relationships at the interface the heat 
generated is related to the postulated temperature distribution. 

An additional restriction of the disturbance waves will be that there is no 
discontinuity at the “ends” of a distance corresponding to one circumference of 
the corresponding tubes from which the plates are developed. That is, the com- 
ponent harmonics of the disturbance must complete one or more whole numbers of 
cycles over the specified length. The combinations of materials properties and 
operating conditions which compatibly satisfy this full set of conditions may be 
considered to define the circumstances for a disturbance of the specified wave length 
to exist without damping or amplification. Broader considerations show such a 
condition to reside on the boundary between the damped (stable) and amplified 
(unstable) conditions of operation3. 

SOLUTION FOR A STEADILY MOVING TEMPERATURE WAVE 

With reference to one plate, designated as No. 1, a temperature disturbance 
on the edge may be postulated according to: 

T = To sin w(x- ct) (1) 

where T, is constant, o is a measure of wavenumber, x is measured along the edge 
of the plate, and c is the steady traversal velocity of the wave along the edge of the 
plate. 

For the heat equation 

with the additional boundary conditions T =0 as y-03. Here y is measured normal 

Dorin
Polygon

Dorin
Polygon
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to the edge ff the plate. The solution within body No. 1 can be shown to be 

Tt = TDe-B’yl sin(wx-wc, t+a,y) (3) 

where 

(5) 

The unit heat flux (gl) into the surface of the designated body is given by: 

8T 
ll= --I( ay yt_-o= ( > 

-KTo[al cos(wx-welt)-bb, sin(ox-wc,t)] (6) 

If the frame of reference is shifted so that the wave is stationary and the surface is 
moving relative to it, the surface temperature will be 

T = To sin wx (7) 

and 

q1 = K, T,[b, sin ox-a, cos ox] (81 

When a corresponding analysis is carried out for body No. 2 (moving in the 
opposite direction relative to the temperature wave with velocity c2) it is found that, 
using the plate as a frame of reference: 

T, = TOeebzY2 sin(wx-wc,t-azy) (9) 

where a2 and b2 correspond to eqns. (4) and (5) with the appropriate changes of 
subscripts. From this it follows that 

42 = 
-K aT, 

( ) 2 aY2 yz-o 

=K,T,[-a2cos(ox+wc2t)-b2sin(wx+wc2t)] (10) 

Shifting the frame of reference so that the wave is stationary, and the plate is moving 
relative to it: 

q2 = K, To[b2 sin wx+a, cos ox] (11) 

Adding the heat flows into the two surfaces at corresponding points along the wave, 

CI net = q1+q2= TO((K,bI+Kzbz)sinox+(Kzaz-K,a,)cosox) (12) 

THERMOELASTIC STRESS IN A PLATE SUBJECT TO A STEADILY MOVING TEMPERA- 

TURE WAVE 

For a plate one may write the thermoelastic equation in terms of displace- 
ment potential, Y, as follows3: 

$ + 5 = (~+v)~Toe-bYsin(~~+~~-~c~) (13) 

This is in the frame of reference on the temperature wave, and neglects inertial 
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effects. Letting surface displacement u in the y direction be zero (~1,~~ =0), and 
Y-+0 as y-+co, recognizing a!P/afr =u, it is found that Y is given by an equation of 
the type 

Y, = (Ae-“Y’)(C cos wx+D sin OX) + k(l+v,)a, TOe-bly cos(*x+a,y) 

(14 
The coefficients C and D are evaluated to satisfy the boundary conditions. 

It follows from this that the surface pressure pi on body No. 1, with the 
surface held flat, would be: 

Pi = 
&a, Tokl 

Cl 

[-(c+.bJcos ox-t-a, sin ox] (15) 

A corresponding equation can be written for body No. 2 with the appropriate change 
of subscripts. When the two bodies are brought together and the constraint on the 
boundary is relaxed each surface will undergo an equal and opposite displacement 
until the stresses are equal. For a sine wave distribution of displacement it is known’ 
that p”= EwS/2, where 6 = 6, sin ox. Hence for body No. 1: 

P= 
E,td 

--=pp;+pflr 
2 

and for body No. 2: 

E,Cd 
p=+ 2 

- = p;+p” (17) 

Recognizing that for ~uilibrium p must be identical on both bodies, consequently 
6 may be eliminated, and one will find 

For equilibrium (stability) heat generated by friction must equal heat conducted 
from the interface. If: 

PPW-c2) = 4net (19) 

(K,b, +K2b2)sin ox+(K2a2~Klal)cos ox = 

P&E, 
w=c2k--- 

a2k,(~--b2) Oh-h) - 
E, +E2 1 

cosox + 

cz Cl 

+ 
1 

~2k2a2 Q+I 
----+- 

1 1 sin ox 
cz Cl 

To satisfy eqn. (2) coefficients of sine and cosine terms should respectively be 
equal on both sides of the equation. Hence: 
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THERMOELASTIC INSTABILITY IN SEALS 183 

TABLE II 

MAGNITUDE OF FRICTION COEFFICIEblT REQUIRED FOR SELECTED MATERIALS TO 
SATISFY EQN. (23) 

Material Friction coefficient, p 

Aluminum 2 
Cast iron 2.95 
Glass 33 
Silicon carbide 6.4 

SOLUTIONS FOR A CONDUCTING BODY SLIDING ON A NONCONDUCTOR 

For this case ki-+O, K1+O, since a non-conductor does not convect heat 
Cz+O, and Ci-tV. If V9 1, 

Under these conditions eqn. (21) reduces to 

c 
1 

= I/ = 2K2451+E2) 

@lE2~2 
(24 

As will be shown in the next section, this equation does serve as a good first 
approximation to the numerical solution of eqns. (21) and (22) for real materials, 
where one is a. relatively poor conductor. Of interest at this point is the fact that 
the likelihood of instability is much higher here than for materials sliding on their 
own kind. Furthermore sliding speed plays a stronger role. For any friction coef- 
ficient there is a sliding speed that satisfies eqn. (24). The usefulness of this equation 
as an approximation is further illustrated by comparison with numerical solutions in 
the paragraphs which follow. It is of interest also that this solution corresponds 
closely to that of a conducting scraper on a non conducting drum for which the 
dynamic as well as stationary case is treated in ref. 3. 

NUMERICAL SOLUTIONS FOR EQNS. (22) AND (23) 

To find simultaneous solutions for eqns. (22) and (23) each has been solved 
individually for appropriate combinations of ci and c2, giving rise to curves on cr 
versus c2 plots. Intersections of these curves correspond to simultaneous solutions 
of both equations. For trial computations high and low values of p were selected, 
possibly outside the range of common practice, but usually ‘within the realm of 
possibility. Approximate scaling to other magnitudes may be guided by eqn. (24). 
Materials properties were taken from Table I. The spatial periodicity w was allowed 
to be unity, a realistic magnitude. Since velocity appears in conjunction with o as 
c/w, it is not difficult to scale to other values of w. 
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Fig. 4. Ratio of disturbance velocity in the insulator to disturbance velocity in the conductive body for 
aluminum sliding on aluminum with hypothetically reduced conductivity. 

an insulating film on one of the two surfaces. Such a film might be a natural oxide 
or a protective coating which would rlduce the apparent conductivity of the material. 

As an afterthought, Table V has been prepared showing how real insulators 
compare in their performance with Al,, of the same conductivity. Graphite is not 
included since its low E makes it depart significantly for the other materials. 

CONCLUSION 

The above derivations serve to predict the conditions beyond which pressure 
disturbances on the contacting lips of a seal will be amplified. This simplification can 
lead to a concentration of load on small portions of the surface with attendant damage 
or it can lead to a parting of the surface when the negative lobe of the pressure 
disturbance exceeds the magnitude of the initial uniform contact pressure holding the 
surfaces together. 

For materials contacting their own kind, instability would be seen only at 
high values of friction coefficient. The magnitude of the uniform initial load has 
1ittE influence except through its effect on overall temperature which, in turn, may 
alter materials properties. The role of the sliding velocity is small, since even for 
modest values of velocity the term in parentheses in eqn. (23) approaches unity. The 
remaining term is normally below unity for the substances silicon carbide, aluminum 
and cast iron, which span a broad range of properties among them. This would 
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TABLE V 

COMPARISON OF REAL MA~RIALS SLID ON ALUMINUM WITH PREDICTIONS FOR 
FIG. 6 

._______ 

Materials Cww* P cl c,** hypothetical 
--____l_ 

Al on Al I 1 
Cast iron on Al 0.22 1 3” :6 
SIC on Al 0.08 1 1.72 1.9 
Glass on Al 0.04 1 1.1 1.30 

0.1 15 40 

* K taken from Table I. 
** From Fig. 2 for given fi and K,,/K,,. 

enough in magnitude. Specific ~lculations for a number of materials combinations 
support eqn. (24) as a useful first approximation for other pairs. 

In reviewing these derivations it should be held in mind that they predict only 
the threshold of instability. To fully understand the effects of such an instability, 
however, additional considerations of the limits of growth of disturbance will be 
required. 
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