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Abstract 
With a class IV couple of friction joint there are conditions when the disturbances of the pressures on 
the interface increase, decrease or remain unchanged. When the two materials of the joint are identical 
a relative stability is formed regarding this phenomenon, while a good heat-conducting material 
coupled with a heat insulator, depending on certain characteristics of sliding speed, creates instability. 
Equation of this paper specifies the threshold for instability. 
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1. INTRODUCTION 
 
With a class IV friction joint (annular joint), which is the primary sealing of a frontal sealing, 

may appear situations in which pressure disturbances within the interface decrease, increase, or 
remain constant. These in turn are influenced by the properties of the materials in contact, coefficient 
of friction and relative sliding velocity.  

The increase of the pressure disturbances in the interface leads to an increase in contact 
pressure and the local temperature. Adjacent to the zones with low pressure the surfaces can detach 
leading to important losses by leakage. 

Materials of the same type making the joint tend to a relative stability when speaking of this 
phenomenon, while a joint composed of a good heat conductor material and a insulator will always 
show characteristics of relative sliding speed, from which instability appears. 

The sliding contact at relatively high speeds is associated with a macroscopic instability, so that 
on a flat and uniform contact area will appear disturbances of local pressure. 

This leads to negative effects upon the contact area from the point of view of heating and wear.  
The simplified configuration of the primary sealing (class IV friction joint) is presented in Fig. 1. 

For such geometry, if the pressure is uniform in the interface, the temperature slowly rises until it hits 
a nominal value determined by the operating parameters. 

If instead the uniform distribution of the pressure is disturbed even sparsely (which can be 
expressed as a Fourier series or waves along the contact surface) the 
disturbance may diminish, may remain unchanged or may rise. Thus, the 
stability of the pressure distribution can be investigated according to the 
behavior of waves of initial disturbance. 

 Figure 1 

The problem is assumed to be ideal linear, with a linear heat 
transfer, thermal expansion and elastic displacement so that:  

 the solution found is for the pressure wave produced at the surface of 
the semi-infinite ring extremity when there is a temperature wave of 
constant amplitude moving with constant speed;  

 there is a relationship between the pressure wave and the heat 
produced by friction, generated at the limiting value, where it is 
assumed that another plate slides over and takes over the pressure 
distribution. 

As an additional restriction of harmful waves it is assumed that 
there is no disruption at the extremities of the distance corresponding to 
the circumference of the tube (fig 1). 

This implies that the harmonic components of the disturbance, 
complete one or more numbers of cycles over the specified length. 
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The combination of properties of materials in contact and operating conditions which satisfy the 
entire set of conditions will be considered to define the circumstances of a specified wavelength 
disturbance, without diminution or amplification. 

 

2. SOLUTIONS FOR A TEMPERATURE WAVE WITH CONSTANT 
MOVEMENT 
 
If referred to one of the plates marked with 1, the edge temperature perturbation can be 

expressed: 
T = T0 * sin ω(x-vt)                                                    (1) 

 
where: 

 T0 is the constant for temperature 
 ω =2nπ/L the measure of wave number 
 x – is measured along the contact surface 
 v - Instantaneous transverse velocity of the wave along the contact surface 

Heat transfer equation: 
δ2T/ δx2+ δ2T/ δy2-(δT/ δt)/k=0                                               (2) 

-∞ ≤ x ≤ ∞ 
0 ≤ y ≤ ∞ 

 with T=0 when y→∞; y is measured perpendicular to the contact surface   
Solution for body number 1: 

T1= T0e-b1y1 sin (ωx - ωv1t + a1y)                                            (3) 
where:       

b1= {ω2/2 + ω/2 [ω2 + (v1/k1)2 ]  ½ } ½                                      (4) 
a1 = {- (ω2/2) + ω/2 [ω2+ (v1/k1)2 ]  ½ } ½                                 (5)         

where: 
 k – material diffusion capability 
 K - material conductivity  
 p - pressure 
 cp – specific heat 

The heat flow (q1) is given by the equation: 
q = - K(δT/ δy)y1=0 = -KT [a1cos(ωx  - ωv1t)  -  b1sin(ωx  - ωv1t)]                 (6) 

Surface temperature will be:    
T=T0 sin ωt                                                                   (7)        

and  
q1 = K1 T0 (b1sin ωx - a1 cos ωx)                                                 (8) 

For the second body (which moves in the opposite direction relatively to the temperature wave 
with the speed v2): 

T2 = T0e-b1y1 sin(ωx   -  ωv2t  - a2t)                                                 (9)  
Where a2 and b2 correspond to the (4) and (5) equations with the correct changes for indices. 

Thus:     
q2 = - K2 (δT2/ δy2)y2->0 = K2 T0[a2cos(ωx - ωv2t) – b2sin(ωx + ωv2t)]             (10) 

If the wave is stationary and plate is moving relative to it:    
q2 = K2 T0 (b2sin ωx + a2cos ωx)                                                (11) 

and 
q = q1+ q2=T0 [(K1b1+ K2b2) sin ωx +(K2a2- K1a1) cos ωx]                      (12) 

 
 

3. STATE OF THERMO ELASTIC STRESS IN A PLATE SUBJECTED  
     TO A WAVE OF TEMPERATURE THAT MOVES UNIFORMLY 
 
The thermo elastic equation of a plate depending on the potential of displacement Ψ is: 

δ2 Ψ / δx2+ δ2 Ψ / δy2 = (1+ ν0)αT0e-by sin (ωx   + ay-  ωvt)                 (13) 
where: α - coefficient of thermal expansion 

      ν0 – Poisson’s coefficient 
The speed v of the surface on the direction of y is zero (vy->0) and Ψ→0 when y→∞, δ Ψ / δy ≡v, 

resulting in: 
Ψ1= (Ae-ωy)(C cosωx+D sinωx)+(k1/vω)(1+v1) α1T0e-b1y cos(ωx+ a1y)              (14) 
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Coefficients C and D are evaluated to meet the condition on the limit. Results that the surface 
pressure p1’ will be:  

 p1’= E1 α1 T0 k1 [-(ω-b1) cosωx+ a1 sinωx]/v1                                             (15) 
A similar equation can be written for the body numbered 2. At the moment of contact between 

the two bodies each surface will suffer a displacement equal and contrary till the equalization of 
tensions: 

              p1”= Eωδ/2     with δ= δ0 sinωx ← thermal layer thickness 
As a result: 

p= - E1ωδ/2 = p1’+ p”                                                                                                   (16) 
p= E1ωδ/2 = p2’+ p”                                                                                                      (17) 

Given the fact that p must be identical for the two bodies (according to the law of balance) δ can 
be eliminated 

p=E1E2T0 {[α2k2 (ω-b2)/v2- α1k1 (ω-b1)/v1] cosωx 
+ [α2k2a2/v2+α1k1a1/v1] sinωx}/(E1+E2)                                         (18) 

According to the principles of equilibrium, the heat generated by friction must be equal to the 
heat from the interface if: 

mp (v1 + v2)= q                                                                       (19) 
(K1b1+K2b2)sinωx +(K2b2-K1b1) cosωx = 

(v1 + v2)μE1E2 {[α2k2 (ω-b2)/v2- α1k1(ω-b1)/v1] cosωx 
+[α2k2a2/v2+α1k1a1/v1] sinωx }/(E1+E2)                                                 (20) 

To satisfy the equation (2): 
K1b1+K2b2=(v1 + v2)μE1E2[α2k2a2/v2+α1k1a1/v1]/(E1+E2)                       (21) 

K2b2-K1b1=(v1 + v2)μE1E2[α2k2a2(ω-b2)/v2- α1k1a1(ω-b1)/v1]/(E1+E2)            (22)    
So for bodies of the same material: v1=v2=v/2, and equation (21) reduces to: 

μEαka/bK =1=  μEαka {[1+[1+(v/kω)2]1/2]/[1+[1+(v/kω)2]1/2] }1/2/K            (23) 
and for two bodies of which, one is good conduit for heat and other heat isolated: 

k1→0,  K→0,  v2→0,  and v1→v.  If v>1, a1→ω(v1/2k1ω)1/2 
a2→v22k2; b1→ω(v1/2k1ω)1/2;   b2 → ω[1+(c2/k2 ω)2/8] 

and equation (21) reduces to: 
v1=v=2K2 ω(E1+E2)/ μE1E2α2                                                                                   (24) 

 
4. CONCLUSIONS   
 
The equations from above serve to provide the terms depending on which the pressure 

disturbance in a frontal sealing interface increases. In this case load concentrations occur in small 
portions of the contact surfaces, resulting in damage or separation of the rings. 

For materials of the same type, instability occurs only at a high coefficient of friction. Initial size 
of the uniform load has little influence on the general temperature which may alter the properties of 
the materials. Role of slip velocity is also small. 

In case the material has different properties from the point of view of transfer of heat produced 
by friction will be taken from the heat-conducting body and the limit between stability and instability 
depends on the relative sliding velocity. 
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