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Modeling composting kinetics: A review of approaches
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Abstract

Composting kinetics modeling is necessary to design and operate composting facilities that comply with
strict market demands and tight environmental legislation. Current composting kinetics modeling can be
characterized as inductive, i.e. the data are the starting point of the modeling process and determine the
type of model used. It is argued that the inductive empirical approach has been developed to its limit of
practicality. Further progress is not expected because of limits in measurement techniques and the resources
needed to perform all experiments needed.Contrary to the inductive, the deductive modeling approach uses
the existing theory as its starting point for model development. Deductive models of realistic situations
contain many basic parameters representing the theoretical basis. These basic parameters however tend to
be non-identifiable, limiting practical application.

To overcome this problem, it is proposed that the basic parameters in the deductive model must be
combined to a smaller number of so-called combined parameter that are identifiable. In this way a model is
developed that can incorporate both the theoretical knowledge introduced via the basic parameter and the
information of data as represented by the identifiable combined parameters.

As an example of how information of both theory and data can be used, the case of the temperature
effect on the composting rate is analyzed. The temperature effect is quantified as the activation energy E, a
parameter derived from the well-known Arrhenius equation. The theoretical analysis shows that the
E-value changes strongly during the process, which is very remarkable, as the E value of basic parameter
remains constant. These results are in accordance with literature findings. The results suggest that the
multiplicative approach used in first-order modeling should be reconsidered, as both the literature findings
as well as the theoretical analysis of the model predict a shift in E-value. Missing a shift in the E-value could
lead for instance to instability in temperature control algorithms.

1. Introduction

Proper design and operation of the composting
reactor is necessary to guarantee a good compost
quality and reduced emissions (Keener et al.
1992). As composting is primary a microbial
process, the main function of the composting
reactor will be the realization of optimal envi-
ronmental conditions for the microbial popula-
tion (Finstein 1980). To define these optimal
conditions the dependence of the composting rate
on environmental conditions, i.e. composting
kinetics should be known.

Knowledge of only the optimum conditions is
not sufficient. Optimal composting temperature

can be as low as 45 �C (Finstein & Hogen 1992).
For pathogen reduction an elevated temperature
well above 45 �C is necessary (Bollen 1992; Farrel
1992). These demands for the operational com-
posting temperature obviously conflict, and a
temperature level has to be chosen such that
pathogen reduction is assured while the compo-
sting process rate is not too much hampered. In
composting engineering a trade-off always has to
be made between different conflicting objectives.
Knowledge of the optimum alone is therefore not
sufficient and the explicit dependence of the com-
posting rate in a broad range of the environmental
factors should be known. This allows better opti-
mization through calculation. The best way to

Reviews in Environmental Science & Bio/Technology (2004) 3: 331–342 � Springer 2005
DOI: 10.1007/s11157-004-2335-0

Admin
Rectangle

Admin
Rectangle

Admin
Rectangle



achieve this is via mathematical modeling of the
kinetics of the process. Although for design pur-
poses there is a pressing need for a composing
kinetics model, at present there is no standard
model.

Topic of this review is the mathematical mod-
eling of composting kinetics. The topic is treated
from a more general perspective of systems sci-
ence. Models described in literature will be cate-
gorized according to their model building
strategies. Two main strategies can be distin-
guished, the inductive strategy that is data based
and the deductive strategy that is theory based. It
will be argued that both strategies can not succeed
in delivering a validated general kinetic model. A
modified deductive strategy is proposed that might
avoid the shortcomings of the currently used
strategies. This strategy is exemplified by handling
the temperature effect on composting.

2. Model building strategies

Aris (1978) defines a mathematical model concisely
as ‘‘any set of equations that under certain con-
ditions and for a certain purpose provide an ade-
quate description of a physical system.’’ A physical
system is an outlined part of reality whose prop-
erties one seeks to understand, in this paper the
composting rate of a waste sample. A model con-
tains basically two types of quantities, parameters
that are constant in time and variables that vary in
time. An input variable is a variable that is not
affected by other quantities within the model and
that can be freely chosen (to some extent) or is
imposed by the outside world. The output is a
variable that is observed.

A model building strategy describes the steps
needed to build an adequate model for a given
process. A model building strategy is no strict
methodology, it is more a set of guidelines that
have proven useful. In literature many different
sets of guidelines can be found. (Eykhoff 1974;
Beck 1980; Spriet & Vansteenkiste 1982; Heij &
Williams 1989; Keesman 1989; Beck 1993; Ljung
& Glad 1994a; Reichert & Omlin 1997). Figure 1
gives a schematic representation of the model
building process based on the work of Heij and
Williams (1989) and Eykhoff (1974). The figure is
structured around the starting points and out-
comes that are printed in italic in the text.

The starting point of the strategy lies in the
phenomenon or process of interest, the theory
about the process and the objectives of the mod-
eling exercise. Modeling objectives influence mod-
eling process during all phases. Typical modeling
objectives are understanding, describing, predict-
ing, controlling or optimising the process. For
instance, in modelling a composting process it is
important to know whether one wants to have a
model that just describes the rate of a specific
waste or one wants to understand the processes
that are occurring. In the case of describing the
rate one might use an empirical model, while for
understanding how various factors affect the rate
one uses a mechanistic model. Objectives are
especially important when evaluating the resulting
model.

The process of interest in this paper is compo-
sting kinetics. Associated with this process is a
body of more or less well developed theory that
describes and explains the phenomenon. Theory if
available leads to a set of a priori concepts about
the process. For instance, realising that compo-
sting is a microbial process leads to inclusion of
the concept ‘‘microbial biomass’’ into the model.
The choice for concepts is also influenced by the
model objective. Based on the a priori concepts a
model structure is defined, i.e. a collection of fea-
sible models is constructed. The strategy of deriv-
ing a model structure from theory is called the
deductive strategy (classical modeling, white box
modeling), where the theory takes a central place.
However theory is not always available, or theory
is deemed less relevant, in such a case a so-called
inductive strategy (black box modeling) is fol-
lowed. Instead of deducting a model from first

Model Structure

TheoryObjectives Process

Identified Model

Valid Model

DataCriterion

Model Use

Figure 1. Schematic flow scheme of the model building process.
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principles, a flexible model family (e.g. linear
regression, difference equations with flexible order,
etc.) is chosen as the model structure. The induc-
tive approach tries to find the relationship between
output and input.

From studying the phenomenon through
experimentation data are obtained. These data are
used to identify the model that best describes the
data. From the theory is it sometimes possible to
partly specify the parameter values. However
parameter values for the specific process are often
not sufficiently accurately known and parameter
estimation is necessary from data. The para-
meter values are estimated by selecting those
parameter values that give the best correspondence
between the model outcome and data. To evaluate
the correspondence between data and prediction a
criterion is needed, that ideally is based on the
modeling objective. In the inductive strategy
model identification is broader in the sense that
also changes in the model structure can be inves-
tigated. Based on the data decisions are made on
what terms to retain in, add to, or remove from the
model. The distinction between parameter esti-
mation sec and model identification in a broader
sense is not so clear cut, if parameter estimation
yields zero for a certain parameter value, this
might induce a change in the model structure. As a
result of the model identification an identified
model results.

After having identified the model the validity
of the result should be assessed. Model valida-
tion might be loosely defined as assessing the
quality of the model i.e. determining whether the
model will be adequate for its intended use. As
validity is not a clearly defined property, it is not
surprising there are no universal tools to mea-
sure validity. However, a number of elements
may be distinguished (Spriet & Vansteenkiste
1982).

Before validating the model first the extent to
which the model can describe the data is evaluated.
This is a not an element of model validation, as
during model development the parameter values
have been chosen such that the data and model
prediction correspond best. If this correspondence
is poor the model validity may be doubted, but if
there is a good correspondence this does not nec-
essarily mean that the model is good. A faulty
model containing sufficient parameters may well
be able to describe the data very well.

A first element of model validation is to com-
pare the model prediction with new data, i.e. data
that have not been used for parameter estimation.
Although this test is better than using the data
used for parameter estimation it still does not tell
whether the model represents the underlying
structure of the process (van Straten 1998).

A second element is to investigate to what extent
the model structure corresponds to what is known
about the process. Elements of this step are
comparing parameter values and the output devel-
opment to what is known or expected. This is not a
step that can be put rigorously in a statistical
framework like the first element. However it does
give information on how good the model represents
the underlying structure of the process. This latter
step makes sense only for the deductive modeling
strategy.

Iteration (not shown in figure) is an important
step in modeling process. If at some stage of the
modeling process the outcome is not satisfactory,
this stage or some previous stage has to be
repeated.

The inductive and deductive strategy can be
viewed as the extremes of a continuum of modeling
strategies. Intermediate strategies, using both
theoretical elements and empirical functions are
sometimes called grey box modeling. These grey-
box modeling strategies are commonly used, how-
ever this concept needs the concepts of inductive
and deductive modeling for definition and tools.

3. Inductive composting kinetics modeling

Composting kinetics is defined in this paper as a
comprehensive set of equations (mathematical
model) that describe the dependence of the
composting rate on environmental factors over a
range of practical interest. The kinetic model to be
developed should be able to predict the process
rate in relation to the (actual) composition of the
waste and (actual) conditions to which this waste is
exposed in the reactor. Starting point of any
inductive kinetic model is the degradation of
organic matter as this supplies the free energy to
drive the process (Waksman et al. 1939; Godden
et al. 1983; Finstein et al. 1985; Godden & Pen-
ninckx 1987). The other factors influencing the
process rate are generally referred to as environ-
mental factors. The most important environmental
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factors distinguished are: temperature (Gray et al.
1971; Suler & Einstein 1977; Finstein 1980;
Nakasaki et al. 1985b; Cathcart et al. 1986; Gol-
ueke & Diaz 1987; Richard & Walker 1998), bio-
mass (Nakasaki et al. 1985a; Nakasaki &
Akiyama 1988), moisture (Schulze 1961; Jeris &
Regan 1973b; Suler & Finstein 1977; Bakshi et al.
1987), oxygen (Suler & Finstein 1977; Nakasaki
et al. 1987; Richard et al. 1999), porosity (Jeris &
Regan 1973b), particle size (Gray et al. 1971)and
C/N ratio (Morisaki et al. 1989).

3.1. Organic matter degradation modeling

The process rate is preferably expressed on the
basis of a unit amount of waste and not of the
total amount of the waste. Keener (1992) discusses
this matter in more detail and proposes the fol-
lowing first order model:

dm
dt
¼ �kðx1; x2; . . . ; xnÞ � ½m� me� ð1Þ

where m (kg) is the composting mass; k (h)1) the
composting process rate constant; xi the environ-
mental factor e.g. temperature, oxygen, moisture,
etc; t (h) the time; and me (kg) is the equilibrium
mass, i.e. the residual mass after infinite compo-
sting time.

The model above is a state space model with m
as a state variable. The output of the model is also
m as this is the observation. The model has two
parameters me and k. The latter parameter is the
function of a number of exogenous variables or
inputs. If the environmental factors remain con-
stant in time, integration of the above equation
directly leads to:

R ¼ m� me

m0 � me
¼ e�kðx1;x2;...;xnÞ�t ð2Þ

where R (dimensionless) is the compost mass ratio.
The compost mass ratio changes from 1 at

t ¼ 0 to 0 at t ¼ 1 and is a useful measure for the
process progress and consequently compost sta-
bility. The value of the compost process rate con-
stant k depends on the type of waste .In case of
chicken manure the data of Keener (Keener et al.
1992) show that this model is applicable over a
short time period (approx. 3 days), after such a

period the k-value had to be updated, to reflect the
changes in waste composition. In the case of yard
waste the model is applicable over a much longer
period once the peak activity has been reached
(Marugg et al. 1993).

3.2. Environmental factor modeling

A number of kinetic models have been published
in the literature about the dependence of the
compost process rate constant k on environmental
factors (Schulze 1961; Jeris & Regan 1973b; Jeris
& Regan 1973a; Finger et al. 1976; Haug 1980;
Whang & Meenaghan 1980; Cathcart et al. 1986;
Nakasaki et al. 1987; Stombaugh & Noke 1996;
Richard 1997). These models share the following
multiplicative structure:

kðx1; x2; . . . ; xnÞ ¼ kS � f1ðx1Þ � f2ðx2Þ . . . fnðxnÞ ð3Þ

where kS (h)1) is the composting process rate
constant under standard environmental condi-
tions; n the number of environmental factors; and
f1,f2 the Environmental factor effect function.

The functions f describe the effect of a specific
rate determining factor on the process rate con-
stant. If the process rate is measured under stan-
dard conditions all functions have the value 1. The
most extensive model is still the kinetic model
proposed by Haug (Haug 1980). This models takes
into account the effect of temperature [T, �C ], the
gas phase oxygen content [O2, % vol.], the mois-
ture content of the waste M, [kg water�(kg
waste))1] and the free air space FAS, [m3 air�(m3

bulk waste))1]
An important assumption underlying the mul-

tiplicative model is the independence of the effects
of the different environmental factors involved.
However, Richard and Walker (1998) and Richard
et al. (1999) have shown that depending on mois-
ture content, oxygen content and material, the
optimal temperature varied from 52 to 64 �C. The
effect also depends on the extent of organic matter
degradation, thus not only do environmental fac-
tors influence each other but also the changing
composition of the waste influences the effect.
Compared to the factors oxygen, moisture and
temperature, the dependence of the rate on the
waste composition has received little attention.
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3.3. Inductive modeling approach limitations

A distinct feature of the models used to date is that
they are inductive models i.e. they try to relate
directly the input (e.g. temperature) to the output,
the composting rate. Although these models give a
good description of the observed kinetic depen-
dencies, it is expected that the data-oriented
approach will not yield a comprehensive kinetic
model i.e. a model that embraces all major envi-
ronmental factors including waste composition.
The following justification is given to substantiate
this statement.

1. To investigate all environmental factors and
their possible interactions a big experimental
effort is needed. This is especially so because the
heterogeneity of the waste calls for numerous
replications. For instance to determine the
effect of oxygen and moisture on the optimal
temperature Richard (1997) performed the
experiments at three moisture levels, three
oxygen levels and four temperatures. To
achieve sufficient accuracy each combination
was measured three times, yielding a total of
108 experiments. Trying to include two addi-
tional factors like pH and porosity in this
scheme would give 3 · 3 · 108 experiments,
which gives a total of 972 experiments.

2. A number of factors (biomass, particle size) are
expected to be important but can not be
measured. For instance biomass can not be
measured as no techniques are available for
quantitative measurement in an organic waste
matrix (Mitchell & Lonsane 1992). This makes
it impossible to come up with an inductive
model for these factors. As these factors tend
to be variable, they constitute a source of
variability when measuring the effect of other
factors.

None of the aforementioned objections is of a
principal nature, i.e. with sufficient effort and smart
measurement techniques they could be overcome.
Nevertheless taking into account the current mea-
surement standards in composting the inductive
approach seems to have reached its practical limit.

The lack of a theoretical framework for com-
posting kinetics thus seems to be the main obstacle
for further development of kinetics and hence a
deductive model approach is needed to achieve
further progress.

4. Deductive Composting Kinetics Modeling

4.1. Inductive modeling approach limitations

Current kinetic models are nearly all inductive
models thus primary based on measurements. In
contrast, mechanistic models exploit not only the
data but also a priori information from the laws of
physics, chemistry, etc. The deductive strategy is
expected to lead to models with fewer parameters,
as no parameters are needed to describe what is
already known. As a mechanistic model reflects the
structure of the process it is expected to yield
better extrapolations (Ljung et al. 1994b). Because
deductive modeling is able to exploit both the
information from theory and measurements it
might be fruitful to exploit this strategy in the
compost kinetics.

However to date only twodeductivemodels have
been developed (Hamelers 1992; Kaiser 1996). The
reason that there are only few deductive models
compared to inductive models might be the com-
plexity of the resulting models. This is a phenome-
non not uncommon to ecological models. It has
been experienced that in the field of environmental
and ecological modeling the deductive methodol-
ogy does not always yield adequate models (Beck
1993; Beck 1994; Hauhs et al. 1996; Reichert &
Omlein 1997; Harremoes & Madsen 1999; Schulze
et al. 1999), in particular the predictive power is
sometimes low (van Straten 1998). As the compo-
sting process can be considered as a microbial eco-
logical process, the problems encountered in the
field of ecological modeling may be expected for
composting kinetics modeling.

If the deductive model is made more complex
by incorporating more (state) variables, the num-
ber of (unknown) initial values and the number of
parameters of the constitutive relationships gen-
erally increase. Upon making a model more com-
plex, at a certain point a lack of parameter
identifiability will occur. This means that the
available data set is insufficient to determine with
sufficient accuracy all parameter values. Parameter
non-identifiability can occur already in relatively
simple models (Schulze et al. 1999).

This is also true for composting models as can
be easily seen by considering a simple composting
model that goes one step beyond the first order
inductive model described by Keener et al.
(1992).This first order inductive model for organic
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matter degradation does not take explicitly into
account the presence of he microbial population.
To introduce the biomass into the model the
conventional Monod kinetics may serve as a
starting point. For solid materials the so-called
half-rate constant Ks is high compared to the
substrate concentration S, i.e. S<<Ks (Whang &
Meenaghan 1980). Under these conditions one
may set up the model as follows (Heijnen 1999):

dS
dt
¼ qmax

s � S
Ks
� X

dX
dt
¼ �YS:

dS
dt

OUR ¼ � YS

YO2

� dS
dt

ð4Þ

t ¼ 0
X ¼ X0

S ¼ S0

�

in which: S (mol m)3) is the organic substrate
concentration; X (mol m-3) the biomass concen-
tration; t the time; qs

max (mol mol)1 s)1) the spe-
cific maximum substrate consumption Ks

(mol m)3) the substrate half-rate constant; Ys

(mol mol)1) microbial yield on substrate; OUR
(mol m)3 s)1) the oxygen uptake rate; and YO2

(mol mol)1) the microbial yield on oxygen.
where State variables are X, S; Parameters are

qs
max, Ys, Yo2

, Ks, X0, S0; and Output is OUR.
This example shows that this (already over-

simplified) mechanistic model contains a much
larger number of parameters (6) compared to the
first-order organic matter degradation model that
contains basically two parameters. The output of
the model is the OUR, this is often the only
measure that can be measured in a composting
system. The solid nature of the material and the
variability of waste make measurement on the
organic material or biomass costly, difficult and
uncertain.

An identifiability analysis would show that
none of the aforementioned parameters would be
identifiable, if only OUR is measured. This can be
seen directly from the equation 4, describing the
substrate depletion. Any combination of qs

max and
Ks with the same ratio is able to describe a similar
output. In such a situation the advantage of a
good predictability attributed to deductive mod-

eling is lost, as numerous sets of parameters are
able to describe the same data set. In this way an
increase in the number of parameters may lead to
an increase in the uncertainty of the prediction.
The crux of the problem is that what one assumes
about the system is much more complex than what
one observes from the system. (Beck 1993).

4.2. A modified deductive strategy

Previous analysis might lead to the conclusion that
neither strategy is able to deliver a validated model
and that a valid general model is out of reach any-
how. However, the problems of inadequate theory
and incomplete measurements are related. If suffi-
cient measurements were available, probably more
complete and well accepted theory would be avail-
able. Incomplete measurements are thus a problem
both in inductive and deductive modeling. Either
strategy tends to obscure the problem. The induc-
tive strategy discards the theory and thus has noway
of knowing that measurements might be lacking.
The deductive modeling often tacitly assumed that
there exists a well-established quantitative theory of
the phenomenon of interest. This is however not
always the case. Neglecting the status of the a priori
concepts would lead to overconfidence in the pre-
dictive power of the model (Reichert & Omlein
1997).

To handle this problem, recently a modified
deductive strategy has been explored for compo-
sting kinetics. The strategy aims at reducing the
model such that a model with only identifiable
parameters is left. One starts with the conceptual
model that includes parameters that are derived
from more general principles. These parameters
are called the basic parameters. In case of the
example qs

max, Ys, Yo2, Ks, X0, S0 are the basic
parameters, they that have a solid grounding in
biotechnological principles.

By solving the model for the output, i.e. an
analytical model is sought that describes the
measurement, i.e. the output variables. This ana-
lytical model will contain in general less parameter
than the conceptual model. The parameters in the
analytical model are less in number and consist of
combinations of (functions of) general parameters.
The combined parameters are chosen such that
they are identifiable, while the basic parameters are
in most cases not. For the example a solution for
the OUR can be found with three identifiable
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combined parameters a, d, m. The solution and the
identifiable combined parameters are given by:

OUR ¼ d � 1þ mð Þ � e�a�t

1þ m � e�a�tð Þ2

a ¼ qmax
s � X0 þ Ys:S0

KS

d ¼ Ys

YO2

:qmax
s � S0

Ks
� X0

m ¼ Ys � S0

X0

ð5Þ

The parameter a is a time constant and is the inverse
of the time needed for the maximum biomass
concentration to deplete a substrate concentration
equal toKs. The parameter d equals the initial OUR,
the parameter m is the ratio of the maximally
produced biomass and the initial biomass. It is
interesting to note that this relationship approaches
a first order description if m becomes small.

As there are less combined parameters (3) than
basic parameters (6), it is not possible to extract all
basic parameters from knowledge of the combined
parameters. However the opposite is not true,
knowledge of the complete set of basic parameters
leads to knowledge of the combined parameter.
This also applies to the dependence of the basic
parameters on the environmental factors. If this
dependence is known for a basic parameter it can
be translated to an effect on the combined
parameter. For instance of all general parameters,
temperature influences mainly the basic parameter
qs

max. This means that if one knows that the
parameter qs

max will double over a certain tem-
perature range, one directly can predict that the
values of a and d will double while the other
combined parameter m remains constant upon a
temperature change. This prediction can be made
independent of the knowledge of the exact value of
the parameter qs

max.
Thus if at a certain temperature the values of a,d

and m are determined experimentally, the prediction
for a different temperature can be directly made by
multiplying a and d by a suitable factor. This
example shows a big advantage of deductive mod-
eling, general knowledge about the process can be
used. This is not true for the inductive strategywhen
investigating the effect of temperature. Experiments
must then be performed at other temperatures to
understand the effect of temperature.

5. Application to composting kinetics

5.1. The deductive composting kinetic model

The deductive kinetic model is based on a con-
ceptual description of the structure of waste parti-
cle. The waste particle is considered to be
composed of small solid particles consisting of
either degradable organic matter or non-degrad-
able matter. The small degradable particles are
degraded in a two-step process. First microbial
mediated hydrolysis occurs that transforms the
insoluble material into soluble substrate. Second
the soluble substrate is aerobically degraded. These
small particles are connected via the water phase
that serves as a medium for microbial growth and
mass transport of oxygen and soluble substrate.
The small particles together with the connecting
water phase constitute form a bigger macroscopic
lump, the waste particle. Starting from this con-
ceptual model of a waste particle (both composi-
tion and size distribution), a set of biotechnological
principles describing microbial transformations
and mass transport a mathematical model has been
set up (Hamelers 2001). This model contains the
basic parameters as listed in Table1. Except for the
parameter c all parameters are standard parame-
ters used in biotechnology as described in standard
texts (Bailey & Ollis 1986). The parameter c
describes the spread of the particle size distribu-
tion, a large value of c indicates a small particle size
stretch, a small c value a large stretch. From this
mathematical model the following analytical model
with identifiable combined parameters has been
derived (Hamelers 2001).

OURaðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ e�leffðt�XÞ:

r
OURm;k

cc � 1

�
Z1

fsðtÞ

fc�2 � e�fdfþ kn � Si;0 � e�kn�tð6Þ

�
ZfsðtÞ

0

fc�1 � e�fdf

OURa(t) (mol O2 m
)3 h)1) is the oxygen uptake

rate at time t for a matrix with variably sized
particles; leff (h)1) the effective maximal biomass
growth rate; c is the distribution parameter;
OURm,k (mol O2 m

)3 h)1) is the scaled maximum
OUR of the mean sized particle; W (h) the lag time;
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to the kinetic model and need not to be taken
into account as state variables for the kinetic
model. Of course for a reactor model these fac-
tors (temperature, moisture and FAS) would
serve as state variables. The value of the state
variables then serves as input to the kinetic model
where they serve to update the several parameter
values.

Temperature dependency of microbial pro-
cesses is often described by the Arrhenius rela-
tionship. This relationship can be described as:

pðT Þ ¼ pðTrÞ � e�
E
Rð1T� 1

Tr
Þ ð8Þ

in which: T (K) the absolute temperature; Tr (K)
the reference temperature; p(T) parameter p value
at T; p(Tr) parameter value p at the reference
temperature; E (kJ mol)1) is the activation energy;
R (kJ mol)1 K)1) is the gas constant.

Using this relationship, the temperature
dependency is characterized by the value of the
activation energy E.

The temperature effect on the composting
kinetics of chicken manure will be studied. For this
type of material the deductive model has been
shown to be valid. The basic parameters for the
model are listed in Table 1. The rationale for the
choice of the different parameters at 55 �C is
described elsewhere (Hamelers 2001).

Themain basic parameters that are influencedby
temperature are the growth rate constant (Sonn-
leitner 1983), diffusion coefficient(Wilke 1950),
hydrolysis rate constant (Pfeffer 1974), oxygen
content (Wilhelm et al. 1977) and microbial yields
(Heijnen 1999). Based on the reported relationships
for the temperature dependency of these basic
parameters the parameter values are calculated at
35 �C, using the values at 55 �C as reference values.
To make the temperature dependency of all
parameters comparable an apparent activation
energy is calculated for each parameter from its
value at 55 �C and 35 �C. These E values are also
listed in Table 1.The various parameters have of
course been calculated using the original reported
relationships.

Based on the basic parameters the combined
parameters as used in the deductive model are
calculated for both temperature levels. From these
values again for each combined parameter the
apparent E-value is calculated. Results of the cal-
culations are shown in Table 2.

5.3. Deductive temperature effect modeling

Using these combined parameters the OUR as a
function of time was calculated for both tem-
peratures. The results of these calculations are
shown in Figure 2. It is clear that under meso-
philic conditions the OUR is initially higher as a
result of the higher initial biomass. However at
some point of time the thermophilic OUR
becomes bigger as the thermophilic OUR increase
more rapidly. From this point on, the OUR
remains higher throughout the process. From the
simulated data OUR versus time a new data set is
constructed, OUR versus the Cumulative Oxygen
Uptake (COU). The COU is a measure of the
amount of organic matter degraded. If two sam-
ples of the same wastes have the same COU, the
remaining organic matter level is the same in both
samples. According to the first order model, the
ratio of the process rates of those samples equals
the ratio of the first order k-values, which follows
directly from equation 1.

Using the OUR-COU data, the ratio of the
OUR values can be calculated for each COU value.
From this ratio, the E-value can be calculated at
each COU value. This E-value describes the effect
of temperature on the OUR and will be denoted
EOUR, to distinguish it from the E-values of the
temperature effect on the parameters. Figure 3
shows the EOUR as a function of the COU. Initially
(COU ¼ 0–0.4 mol O2 kg

)1) the EOUR is negative
as a result of the fact that mesophilic temperatures
are favorable at the start of the process. From
COU ¼ 2–4 mol O2 kg

)1 the EOUR stabilizes at a
vale around 20 kJ mol)1. After this stable phase
the EOUR starts to rise to a level of 83 kJ mol)1

until COU ¼ 10 mol O2 kg
)1. From this point the
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Figure 2. The OUR time course for two temperatures of 35 �C
(thin line) and 55 �C (thick line) as calculated with the deduc-
tive model using the parameter values listed in Table 2.
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EOUR decreases again slowly. The most remarkable
fact is that the EOUR seems to change most of the
time, while the E-value of the underlying parameter
of course remains constant.

The temperature dependency of composting
kinetics has been extensively studied in literature.
From a number of studies the observed EOUR in
the mesophilic to thermophilic temperature range
have been collected and listed in Table 3. For all of
these studies the EOUR was either listed in the
original publication or was calculated from listed
data or relationships. Only the optimal tempera-
ture range has been have been taken into account,
that is temperatures up to 55 �C. In these range
generally no adverse effect of temperature has been
observed. From the table it is clear there is large
spread in the EOUR, typically in the range of 10–
60 kJ . mol-1 This large variance is often explained
in term of variance of material and or microbial
population. The large spread found by McKinley
(McKinley & Vestat 1984) is especially interesting
as they were determined for the same material but
at different points in time.

The finding that initially negative EOUR values
are found is in accordance with the finding of

McKinley (McKinley & Vestat 1984) and Richard
(Richard 1997), who found initially the highest
activity in the mesophilic range. Once the EOUR

value becomes positive there is a clear maximum in
the EOUR. This mean that the observed EOUR is
not constant, but varies according to the extent of
degradation. The range observed here in the sim-
ulation 20–60 kJ mol)1 is in the same range as
reported in literature as seen in Table 3.

6. Conclusions

Current kinetic models are generally inductive
models. The inductive approach seems to have
reached its practical limit. The deductive approach
seems therefore an additional fruitful direction to
investigate composting kinetics. Care should
however be taken not to develop models with non-
identifiable parameters, as deductive models of
complex systems like composting contain many
parameters. To prevent this situation it is
proposed that a model should be constructed with
combined parameters, i.e. fewer parameters that
are identifiable however still have a clear
relationship with the basic parameters.

The advantage of this approach is that it enables
to use information from existing knowledge (as
represented by the basic parameters) with the
information retained in the data (as represented by
the identifiable combined parameters).

The effect of temperature on the OUR is an
example of this approach. The theoretical analysis
showed that EOUR changes strongly during the
process, while the E-value of the underlying pro-
cess remains constant. It is interesting to note that
the EOUR value is larger than the E-values of any
single parameter. This shows that the EOUR is a
result of the interplay of a number of processes
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Figure 3. The E-value as calculated from the simulated OUR
curves. The E-values is determined from the OUR ratio deter-
mined at equal COU values.

Table 3. E-values as tabulated from different sources, listed are the source, the T-range of interest and the observed E-value

Reference T-Range [�C] E [kJ mol)1]

(Wiley 1957) 25–55 35.2

(Schulze 1962) 25–55 54.2

(Jeris & Regan 1973c) newsprint 30–50 14.2

(Jeris & Regan 1973c) stable mixture 22–42 16.5

(Jeris & Regan 1973c) mixed refuse 35–55 59.3

(McKinley & Vestal 1984) 30–40 12–51

(Hamoda et al. 1998) 20–40 20.3
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