http://www.ieat.ro/wp-content/uploads/2012/09/technical_reports/Report_|eAT 4.pdf


Administrator
Typewritten Text
http://www.ieat.ro/wp-content/uploads/2012/09/technical_reports/Report_IeAT_4.pdf


2003 Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 1900 Timigoara, Romania
Tel. /fax.: 0256-244834
Http://www.ieat.ro



Institutul e-Austria Timisoara

IeAT Report Series No. 03 - 04

Experience with Formal
Verification of SDL Protocols

Marius MINEA, Cornel IZBASA,
Calin JEBELEAN

Timisoara, May 2003






Experience with Formal Verification of SDL Protocols

Marius Minea*! Cornel Izbaga* Cilin Jebelean*t
marius@cs.utt.ro cizbasa@info.uvt.ro calin@cs.utt.ro

* Institute e-Austria Timigoara
1 Department of Computing, “Politehnica” University of Timigoara
1 Department of Computer Science, West University of Timigoara

Abstract

This report presents a case study in the application of formal methods to the verification
of communication protocols. We analyze one component block of telephone switching software
developed in the SDL language at Alcatel Network Systems Romania. We use the IF toolset
from VERIMAG Grenoble to build a state-transition model of the system and verify selected
properties. We present the steps performed for translation and verification and discuss the
potential for automating the process and using it on a larger scale.

Keywords: formal verification, model checking, SDL, communication protocols

1 Introduction

Traditionally, the most commonly used methods for ensuring the correctness of a system have
been simulation and testing. While both have their strong points — simulation for evaluating
functionality early in the design, and testing for ascertaining the behavior of the actual finished
product — they clearly have significant limitations. For one, neither simulation nor testing can be
exhaustive for any reasonably complex system, leaving open the possibility of unexpected behavior
in situations that have not been explored. Moreover, testing takes up a large part of development
costs, and errors discovered late in the development process can be prohibitively expensive.

Verification is critical especially for concurrent systems, which often present intricate interac-
tions between components that are difficult to follow and evaluate without formal and automated
support. Errors can sometimes occur only for specific execution sequences which are difficult if
not impossible to reproduce or debug, making an exhaustive analysis necessary.

Formal verification has matured in the past decade to a point where it provides an effective
answer to the above problems. Speaking most generally, it involves building a model of the system
under scrutiny, and performing an exhaustive analysis, both model construction and verification
being done with rigorous formal techniques. Formal verification is exhaustive, covering all possible
system behaviors; it is also highly automatable.

Most major companies in the computer and telecommunication industries have formal veri-
fication groups that apply these methods in the design process, and perform in-house research.
Moreover, for certain critical systems, the application of formal methods has become a require-
ment, both for structuring the development process and for verifying the resulting product. For
a survey on the state of the art in the field, including numerous industrial examples, see [CW96].

*This work was supported by BMBWK (Austrian Ministry of Education, Science, and Culture; GZ 45.527/1-
VI/B/7a/2002), BMWA (Austrian Ministry of Economy and Work; GZ 98.244/1-1/18/02) and by MEC (Romanian
Ministry of Education and Research).


Administrator
Polygon

Administrator
Polygon


2 The Verification Problem

2.1 The SDL Language

The Specification and Description Language SDL is supported and standardized by the Interna-
tional Telecommunications Union (ITU-T). It provides both concurrent and real-time aspects and
is particularly suited for the description of communication protocols. Systems are decomposed into
blocks and processes, the latter being the unit of concurrency. Code is further modularized into
procedures. Processes interact asynchronously via signals, that are placed into and consumed from
queues. The communication structure is giving by signalroutes that connect individual system
components.

SDL has a formal semantics and has thus naturally generated interest in formal verification.
It is amenable to automatic verification techniques like model checking, by translating the SDL
description into an automaton-based representation, which is then exhaustively analyzed by state-
space exploration algorithms.

2.2 The Case Study

The code base for the systems developed in SDL at Alcatel is extremely large, both in terms of the
number of files and lines of code. The SDL descriptions are complemented by low-level routines
written in C. Coding activity involves mostly maintenance and development of new features and
integration with the existing system. There is a fairly high amount of unit and non-regression
testing. Specifications are natural language descriptions for the individual behavior of the smallest-
grained design units, as well as diagrams describing the desired scenarios of message propagation
through the system.

To assess feasibility of applying formal verification in this setting, we started out with ana-
lyzing a small component part that would be amenable to full state space exploration and also
comprehensible for an outsider.

The chosen block serves as an intermediate communication step in the establishment of a
telephone connection, in which certain special services are requested from a server. Several types
of functionality are possible, and the block is in charge of performing the appropriate type of
dialog depending on the parameters of the initiating and subsequent messages.

The block has two interfaces, one upstream to the caller and one downstream to the server,
comprising a total of some two dozen signals. Functionality is implemented in a single process,
and 8 procedures, which comprise 1500 lines of SDL code (excluding comments).

Most specifications are specified in terms of unit tests to be performed and involve checking
the correct establishment of the dialogue depending on the various message parameters. There are
also some more complex aspects which warrant verification. Messages can carry parameters which
are memory references to allocated buffers, and the specification states that these have to be freed
properly according to certain rules. Also, a significant part of the protocol logic is dedicated to
checking that both interfaces are shut down properly when the connection is terminated, which
can occur due to a variety of causes.

2.3 Related Work

Research on verification of SDL designs has been done both in academic and industrial settings.
At Siemens, the verification of a layer of the GSM protocol is described in [RB98]. The in-house
BDD-based model checker SVE is used to verify designs of up to 6 processes and 10'3 reachable
states.

The developers of the IF toolset used in our work have performed several case studies [BGMO1],
including a standardized protocol (SSCOP) developed by France Telecom, with 2000 lines of SDL
code, and the control layer of the MASCARA ATM protocol with 3000 lines of SDL code JGO1.
The latter study especially contains a good quantitative comparison of the reduction benefits


Administrator
Polygon




