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Abstract – This study analyses the mathematical aspects 

of diophantic equations and the potential of using them in 

cipher public-key systems. There are also presented the 

algorithms written in C language that were used for 

implementing such a system 
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I. INTRODUCTION 

 
In this paper, a new public-key cipher scheme is proposed. 

By the use of our scheme, the generating steps of keys are 

simple. Both the encryption and decryption procedures can 

be completed efficiently. Our cipher scheme is based upon 

the Diophantine equations.  

In general, a Diophantine equation is defined as follows: 

We are given a polynomial equation f(x1,x2,...,xn) - 0 with 

integer coefficients and we are asked to find rational or 

integral solutions [6].  

Throughout this paper, we shall assume that the solutions 

are nonnegative. For instance, consider the following 

equation: 

 

                          3x1 + 4x2 + 7x3 + 5x4 = 78.                     (1) 

 

The above equation is a Diophantine equation if we have to 

find a nonnegative solution for this equation. In fact, our 

solution is  

 

                          (x1, x2, x3, x4)=(2, 5, 1, 9).                    (2) 

     

A famous Diophantine equation problem is Hilbert's tenth 

problem, which is defined as follows: Given a system of 

polynomials Pi(x1, x2, ..., xn), 1  i  m, with integer 

coefficients, deter-mine whether it has a nonnegative 

integer solution or not. In and, it was shown that the Hilbert 

problem is undecidable for polynomials with degree 4.  

It was shown in that the Hilbert problem is undecidable for 

polynomials with 13 variables [1]. Gurari and Ibarra also 

proved that several Diophantine equations are in NP-

complete class. 

 

II. THE UNDERLYING MATHEMATICS 
 

Let w be some positive integer and the domain D be a set 

of positive integers in the range of [0, w]. Let w = 2
b
 - 1, 

where b is some positive integer. Assume that a sending 

message M with length NB bits is broken up into n pieces 

of submessages, namely m1, m2, and mn. Each submessage 

is of length b bits. In other words, we can represent each 

submessage by a decimal number mi and mi in D. 

Suppose that n pairs of integers (q1, k1), (q2, k2), ... and (qn, 

kn) are chosen such that the following conditions hold: 

1) qi's are pairwise relative primes; i.e. 

 

1. (qi,qj) = 1 for i  j. 

2. 2) k1> w for i = 1,2, ..., n. 

3. 3) qi > kiw(qi mod ki), and 

      qi mod ki   0, for i = 1, 2, ..., n. 

 

These n integer pairs (qi, ki)'s will be kept secret and used 

to decrypt messages. For convenience, we name the above 

three conditions the DK-conditions since they will be used 

as deciphering keys. Note that for the generating of 

pairwise relatively primes, one can consult. Furthermore, 

the following numbers are computed.  

First, compute Ri = qi mod ki and compute Pi's such that 

two conditions are satisfied:  

 

1) Pi mod qi = Ri, and  

2) Pj mod qi = 0 if i = j.  

 

Since qu's are pairwise relatively primes, one solution for 

Pi's satisfying the above two conditions is that Pi = Qibi 

with 
 

ji
ii qQ  

  
and bi is chosen such that Qibi modqi=Ri. Since Qi and qi 

are relatively prime, bi's can be found by using the 

extended Euclid's algorithm. Note that the average number 

of divisions performed by the extended Euclid's algorithm 

for finding bi is approximately 0.843. ln (qi) + 1.47. 

Secondly, compute 
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Ni = )Rk/(q iii       for i = 1, 2, ..., n. 

 

Finally, compute 

                     si = PiNi mod Q  where  
n

1i
iqQ               (3) 

That is, we have a vector S = (s1, s2, ..., sn) with each 

component computed as above. After this, S can be used as 

the enciphering key for encrypting messages. By 

conducting a vector product between M = (m1, m2, ..., mn) 

and S = (s1, s2, ..., sn); i.e., 

                      C = E(S,M) = M*S = 
n

1i
iism                    (4) 

 

a message M is transformed to its ciphertext C, where * 

denotes the vector product operation. Conversely, the ith 

component mi, in M can be revealed by the following 

operation:  
 

mi = D((qi,ki),C) = ii q/Ck  

                                   for i = 1, 2, ..., n                              (5) 

 

Theorem 2.1 shows that (5) is the inverse function of (4). 

The following lemmas are helpful in the proof of the 

theorem. 

 

Lemma 2.1: 

Let a and b be some positive integers where b > a. Then for 

all x, a b/x  < x if   x  ab/(b-a). 

Proof: Let cb/x   for some integer c.  

Then   x/b c < (x/b + 1). We have 

 

                              ac < ax/(b + a).                                    (6) 

 

On the other hand, if   x  ab / (b-a), then (b-a) x  ab; that 

is, 

 

                              (ax/b + a) x.                                     (7) 

 

Combining (6) and (7), we have that  

 

               a b/x < x   if x  ab / (b-a).                           (8) 

 

Lemma 2.2: 

Let Ri = qi mod ki. Then  

 

   kiRimi )Rk/(q iii   mod kiqi = kiRimi )Rk/(q iii     (9) 

 

Proof: Let a = Ri mi, b + ki Ri,  and x = qi. Since qi > ki Ri 

w, we know that qi > ki Ri2 mi / (Ri (ki - mi)).  

That is, x ab / (b-a) is satisfied. By applying Lemma 2.1, 

it can be seen that Rimi )Rk/(q iii  < qi. Therefore,  

 

ki Ri mi )Rk/(q iii   mod ki qi = ki Ri mi )Rk/(q iii  (10) 

 

Lemma 2.3: 

Let mi's, ki's and qi's be chosen such that the DK - 

conditions are satisfied. Let Ri  = qi  mod ki. Then  

 

            iiiiiii q/)Rk/(qmRk = mi.                   (11) 

 

Proof: 

Let = iiiiiii q/)Rk/(qmRk  = mi. It can be easily seen 

that the following two inequalities hold: 

 

         < iiiiiii q/)1)Rk/(q(mRk  = mi                 (12) 

 

and 

 

         iiiiiii q/))Rk/(q(mRk = mi.                    (13) 

 

Furthermore, the right-hand side of (13) is identical to mi  

and that of (12) is iiiii q/mRkm . On the other hand, 

since mi is an integer and kiRimi / qi < 1, the right-hand side 

in (12) becomes   

 

                  iiiii q/mRkm  = mi.                       (14) 

 

Combining these two inequalities. we obtain that mi   

mi. Finally, we have  = mi, since is an integer. 

Theorem 2.1: Let (q1, k1), (q2, k2), ..., and (qn,kn) be n  pairs 

of positive integers satisfying the DK-conditions. Let the 

vector S be computed by applying (1). Then (3) is the 

inverse function of (2). that is, a message enciphered by (2) 

can be decrypted by (3). 

Proof: Let us prove the theorem by the following two steps. 

First, from (1), define si = PiNi' we have a vector  

 

s = (s1,s2,...,sn); i.e., si = si mod Q,  for i = 1,2,...,n.  

 

Let 
 

             C' = M*S = m
1i iii

m
1i ii NPmsm .              (15) 

 

Since Pi's satisfy the following two conditions: 

 

1) Pimod qi=qimodki=Ri; and  

2) Pj mod qi = 0 if i j j, 
 

kiC' mod kiqi = (ki ii
n

1i i NPm )mod kiqi= 

                    =kimiRi )Rk/(q iii mod kiqi.                   (16) 

 

Furthermore, by Lemma 2.2,  

 

     kimiRi )Rk/(q iii  mod kiqi = kimiRi )Rk/(q iii    (17) 

 

That is, kiC’ mod kiqi = kimiRi )Rk/(q iii   for i=1,2,...,n. 

In other words,  

 

                  kiC’=yikiqi+kimiRi )Rk/(q iii .                   (18) 
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for some integers yi. 

Moreover,  

 

            kiC’/qi=yiki+kimiRi )Rk/(q iii /qi.                   (19) 

 

Hence  

 

iq/)iRik/(iqiRimikikiy

iq/)iRik/(iqiRimikikiyiq/'Cik
     (20) 

  

By applying Lemma 2.3, we have  

 

                ii q/'Ck  = yiki + mi.                         (21) 

Thus  

                          mi =   mod ki.                                 (22) 

 

Second, let 

                     
n

1i
iqQ .                                      (23) 

then 

 

C’ mod Q = ( i
n

1i ism ) mod Q = ((m1s1 mod Q) + ...  

+ (mnsn mod Q)) mod Q = (m1 (s1 mod Q) + ...  

+ mn(sn mod Q))mod Q = ( i

n

1i
ism ) mod Q = C mod Q. 

 
That is, C’ = C(mod Q).  

Let C’ = C + zQ, for some positive integer z.  

We have 

 

ii q/Ck  mod ki =( ii q/)zQ'C(k  mod ki = 

          = ( iiii zQkq/'Ck ) mod ki = mod ki           (24) 

 

In other words, mi= ii q/'Ck  mod ki. 

 

 

III. THE CONSTRUCTION OF THE CRYPTOSYSTEM 

 

In this section, the algorithms for constructing the 

cryptosystem, encrypting messages, respectively, are 

presented. 

First, each user picks n pairs of parameters (q1,k1), 

(q2,k2),..., and (qn,kn) such that the DK-conditions are 

satisfied. Afterward, 

 

                              
ij

jqQ                               (25) 

 and   
 

                      ))kmodq(k/(qN iiiii                 (26) 

 

are computed, and bi’s are integers chosen such that Qibi 

mod qi = qi mod ki, for i = 1,2, . . . n.  

Let Pi = Qibi and si = PiNi mod Q, for i = 1,2,...,n, where  

                             
n

1i
iqQ                                (27) 

  

Therefore, a vector  

S=(s1,s2, . . . ,sn) 

 

is obtained. There the n-tuple S of intgers is published and 

used as the public key of the cryptosystem for enciphering 

messages. 

The chosen parameters (q1,k1), (q2,k2), ..., (qn,kn) are kept 

and used as the private key to decipher messages received. 

Specifically, let user A be the sender and user B be the 

receiver, and let A be sending a message represented by 

 
M = (m1, m2,...,mn), 

 
where mi is a b-bits submessage represented by a decimal 

number in the range of [0,2b-1].  

Then (m1,m2,...,mn) is enciphered by (4) into an integer C. 

Afterward, the integer C is sent to user B as the ciphertext 

of the original message M. On the receiving of integer C 

user B is able to convert C into (m1,m2,...,mn) by applying 

(5). 
 

IV. CONCLUSION AND DISCUSSION 
 

A new public-key cryptosystem is investigated in this 

paper. The motivation of this attempt is trying to use real 

numbers for its dense property. However, if real numbers 

are used as keys, several disturbing problems, such as 

representation and precision will be encountered. With the 

help of integer functions, the possibility of using an integer 

as a key is increased significantly. That is, for a 

cryptanalyst who tries to break the cipher, he has to 

conduct an exhaustive search on a long list of integer 

numbers. 

 

        
 

Fig. 1. Key Generating for Each User 
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