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Abstract: Linearly and nonlinearly parameterized approximate dynamic programming approaches
used for output reference model (ORM) tracking control are proposed. The ORM tracking problem is
of significant interest in practice since, with a linear ORM, the closed-loop control system is indirectly
feedback linearized and value iteration (V1) offers the means to achieve ORM tracking without using
process dynamics. Ranging from linear to nonlinear parameterizations, a successful approximate
VIimplementation for continuous state-action spaces depends on several key parameters such as:
problem dimension, exploration of the state-action space, the state-transitions dataset size, and
suitable selection of the function approximators. We show that using the same transitions dataset and
under a general linear parameterization of the Q-function, high performance ORM tracking can be
achieved with an approximate VI scheme, on the same performance level as that of a neural-network
(INN)-based implementation that is more complex and takes significantly more time to learn. However,
the latter proves to be more robust to hyperparameters selection, dataset size, and to exploration
strategies, recommending it as the de facfe practical implementation. The case study is aimed at ORM
tracking of a real-world nonlinear two inputs-two outputs aerodynamic process with ten internal
states, as a representative high order system.

Keywords: approximate dynamic programming; reinforcement learning; data-driven control;
model-free control; reference trajectory tracking: output reference model; multivariable control;
aerodynamic rotor system; neural networks; learning systems

1. Introduction

The output reference model (ORM) tracking problem is of significant interest in practice, especially
for nonlinear systems control, since by selection of a linear ORM, feedback linearization is enforced
on the controlled process. Then, the closed-loop control system can act linearly in a wide range and
not only in the vicinity of an operating point. Subsequently, linearized control systems are then
subjected to higher level learning schemes such as the lterative Learning Control ones, with practical
implications such as primitive-based learning [ 1] that can extrapolate optimal behavior to previously
unseen tracking scenarios. ) ) )

On another side, selection of a suitable ORM is not straightforward because of several
reasons. The ORM has to be matched with the process bandwidth and with several process
nonlinearities such as, e.g., input and output saturations. From classical control theory, dead-time and
non-minimum-phase characters of the process cannot be compensated for and must be reflected in the
ORM. Apart from this information that can be measured or inferred from working experience with the
process, avoiding knowledge of the process’ state transition function (process dynamics)}—the most
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Concerning the exploration issue in ADT for control, a suitable exploration that covers as well as
possible the state-action space is not trivially ensured, Randomly generated control input signals will
almost surely fail lo guide the exploralion in the entlire state-action space, at leasl nol in a reasonahle
amount of time. Then, a priori designed feedback controllers can be used under a variable reference
input serving to guide the exploration [23). The existence of an initial feedback stabilizing contreller,
not necessarily of a high performance one, can accelerate the transition samples datasel collection
under exploration. This allows for offline IMF-AV] based on large datasets, leading to improved
convergence speed for high-dimensional processes. However, such input-output {I0) or input-state
feedback controllers were traditionally not to be designed without using a process model, until the
advent of data-driven model-free controller design techniques that have appeared from the field of
control theory: Virtual Reference Peedback Tuning (VRFT) [24], Iterative Feedback Tuning [25], Model
Free [terative Learning Control [26-28], Model Free {Adaptive) Control [2%,301], with representative
applications [31-33]. This work shows a successful example of a model-free output feedback controller
used to collect input-to-state transition samples from the process for learning state-feedback ADP-based
ORM tracking control. Therefore it fits with the recent data-driven control [24-42] and reinforcement
learning [43,44] applications.

The case study deals with the challenging ORM tracking control for a nonlinear real-world
two-inputs—two-outputs aerod ynamic system (TITOAS) having six natural states that are extended
with four additional ones according to the propoesed theory, The process uses aerodynamic thrust
to create vertical (pitch) and horizontal (azimuth) motion. It is shown that IMF-AVT can be used to
attain ORM tracking of first order lag type, despite the high order of the multivariable process, and
despite the pitch motion being naturally oscillatory and the azimuth motion practically behaving close
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to an integrator. The state transitions dataset is collected under the guidance of an inpul-output (I0)
feadback controller designed using model-free VRFT.

Az a main contribution, the paper is focused on a detailed comparison of the advantages and
disadvantages of using linear and nonlinear paramelerizations for the IMF-AVI scheme, while covering
complete implementation details, To the best of authors” knowledge, the ORM tracking context
with linear parameterizations was not studied before for high-order real-world processes. Moreover,
theoretical analysis shows convergence of the IMF-AVI while accounting for approximation errors and
explains for the robust learning convergence of the NN-based IMF-AV]. The results indicate that the
nonlinearly parameterized NN-based IME-AVI implementation should be de facto in practice since,
although more time-consuming, it automalically manages the basis funclion selection, it is more robust
to dataset size and exploration settings, and generally more well-suited for nonlinear processes with
unknown dynamics,

Section 2 is dedicated Lo the formalization of the ORM tracking control problem, while Section 3
proposes a solution to this preblem using an IMF-AVI approach. Section 4 validates the proposed
approach on the TITOAS system, with concluding remarks presented in Section 5.

2, Output Maodel Reference Control for Unknown Dynamics Nonlinear Processes

Al and A2 are widely used in data-driven control, cannot be checked analytically for the unknown
medel (1) but can be inferred from historical and working knowledge with the process. Should such
information not be available, the user can attempt process control under restraining safety operating
conditions, that are usually dealt with at supervisory level control. Input to state stability (A2) is
necessary if open-loop input-state samples collection is intended to be used for state space control
design. Assumption A2 can be relaxed if a stabilizing state-space controller is already available
and used just for the purpese of input-state dala collection. A3 is the least restrictive assumption
and it is used in the context of the VRFT design of a feedback controller based on input-output
process data. Although soluticons exist to deal with nonminimum-phase systems processes, the M
assumption simplifies the VRFT design and the output reference model selection {to be introduced in
the following section),

Comment 1. Model (1) accounts for a wide range of processes including fixed time-delay ones.
For positive integer nonzero delay d on the control input ug_;, additional states can extend the
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initial process model (1) as.ux__I = M 1, xu Ug g ":,.i ug_g and arrive at a state-space model
without delays, in which the additional states are measurable as past input samples. A delay in the
original states in (1), i.e., x;_a, are similarly treated.

The class of LTI generative models h™(.) has been studied before in [9] but it is a rather restrictive
one. For example, reference inputs signals modeled as a sequence of steps of constant amplitude
cannot be modeled by LTI generative models. A step reference inpul signal with constant amplitude
over time can be modeled as ry.y = rp with some initial condition m, On the other hand, a sinusoidal
scalar reference input signal r can be modeled enly through a second order state-space model. To see
this, let the Laplace transform of cos(awt)e(t) (e(t) is the unit step function) be H(s) = £{cos{wt)e(t)
with the complex Laplace variable s, If sH {3} is considered a t.f, driven by the unit step function with
Laplace transform £{o(8)} = 1/s, then the LTT discrete-time state-space associated with sH(s) acting
as a generative model for ry is of the form

051 = Ao, + By,
= Coay, + Doy,

with known A € EP2B € B, C € RV%L,D € Rog = [0,0]7, and o = {1,1,1,...} is the
discrete-time unit step function. The combination of H(s) driven by the Dirac impulse with £{4(t) }
could also have been considered as a generative model. Based on the state-space model above,
modeling p sinuscidal reference mpfuls I E ﬂg_ - R* requ:ra 2p states. Generally speaking,
the generative model of the reference T !

(3
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In (5), the discount factor 0 < 7 < 1 sets the controller’s horizon, v < 1 is usually used in
practice to guarantee learning convergence to optimal control. |[x|lz = +/x x is the Fuclidean norm of
the column vector x. vyg = [[¥]'(xF) — w,(xF)|[3 is the stage cost swhere measurable y; depends via
unknown g in (1) on xg and vy penalizes the deviation of y, from the ORM's output y{". In ORM
tracking, the stage cost does not penalize the control effort with some positive definite function
Wiug ) = 0since the ORM tracking instills an inertia on the CS that indirectly acts as a regularizer on
the control effort. Secondly, if the reference inputs rp do not set to zero, the ORM’s outputz also do not,
For most processes, the corresponding constant steady-state control will be non-zero, hence making
155 (8) infinite when 7 = 1.

Herein, 8 £ B™ parameterizes a nenlinear slale-feedback admissible controller [6] defined
asuy 2 C(xE, 0), which used in (4) shows that all C%'s trajectories depend on 8. Any stabilizing
controller sequence (or controller) rendering a finite ¢ f. is called admissible. A finite [37; holds if &,
i# a square-summable sequence, ensured totically stabilizing controller if v = 1 or

Under classical control rules, following Coment 1, the process time delay and
non-minimum-phase (NMFP) character should be accounted for in M{z). However, the NMT zeroes
make M(z) non-invertible in addition to requiring their identification, thus placing a burden on the
subsequent VRFT IC control design [45]. This molivates the MP assumption on the




Algaritims 2019, 12,121

Algorithm 1 V-based Q-learning.

S1: Initialize controller Cg and the Q-function value to Q(x{, u} = 0, initialize iteration index { = 1
52: Use one step backup equation for the (J-function as in (13)

53: Improve the controller using the Equation (14)

54 Set j = j <+ 1 and repeat steps 52, 53, until convergence
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Proof. Itis valid that

0

04 (xE ) = o3 ) + 7 Qo ColeEsg)) = -
o

——
b U[IE, “\i:] +F gﬂ(:f.'.l; xﬂ(xf.'.l]) - gl(xfaui)'
Meaning that Q) (xE, ue) < & (xE, up). Assume by induction that Q;_y(xF,ue) = &1 (xE ).
Then
QyixE ug) = wlxf, u) + 70 06, G ) <
i U(XE,IJ*:’ A= TQ}'—I (xf+]’ ‘j—l(xf+1)} i (173
< oixfm) + 98 O ko1 (F4 ) = e, w).
which completes the proof. Here, it was used that C;_y (xf] is the optimal controller for Oy (xF, uy)
per {14}, then, for any other controller C(xf ) (in particular it can also be %;_1 (xf ]} it follows that
Q=101 Cma (1)) < Qjt (0, COG))- (18)

Proof. For any fixed admissible controller gixf ), Q7 (xF, ug) = o0l u) +v07(xE, | yixE ) is the
Bellman equation. Update (13) renders
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2 of Lemma 2 slates that O;(xf, ug) = Q*(xF, u;) implying Q...,(xk,u,:l @*(xf,u3). Then from
Qee(xE, 1) = O (xF,uy) = Oualxf, uy) it must hold true that Qo (xf, 1) = Q“‘(xf,ukl and Co(xf) =
C"(ik J which proves the second part of Theorem 1.

Agorithm 2 MOE-AVE
51: Initialize controller Cy and Q-function value Qo (xf, ug) = 0,'¥(xF, ug). Initialize iteration j = 1
52: Update the approximate (J-function using Equation (24}

53: [mprove the approximate controller using Equation (25)
S4: Set j = j + 1 and repeat steps 52, 53, until convergence

To be detailed as follows:
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Proof. First, the development proceeds by induction for the left inequality. For j = 0 itis clear that
$0o(xF,uz) = Golxf,ug). For j =1, (13) produces Oy (xf, u;) = v{xf, ug) and lefi-hand side of (26)
reads ﬂ"jﬂl{fﬂ(xf- ug) + 0} < Oy (xf, ug). Theny(y {xF,ug) < Oq{xf, uz). Next assume that

P00, w) < 05, ue) (28)
holds at iteration §. Based on (28) used in (26}, it is valid that

min{polxf, u) + 790;(xf,, u)} < i
min{goleg, w) + 100, w0} < Qp (6F, w).

Notice from ({29} that

min{ o, ) + 160, (1,0} = it ) + 72 (1,00}
2 EQHI("E“:)

From (29}, (30) it follows that 0;, (xF,ug) < O (xf, ug) proving the left side of (27) by
induction. The right side of {27) is shown similarly, proving Theorem 2. [J

{30)

P13

In the following Section, the IMF-AV] is validated on two illustrative examples. The provided
theoretical analysis supports and explains the robust learning performance of the nonlinearly
parameterized IMF-AV] with respect to the linearly parameterized one.

4. Validation Case Studies

4.1. ORM Tracking for a Linear Process

A first introductory simple example of IMF-AVI for the ORM tracking of a first-order process
maotivates the more complex validation for the TITOAS process and offers insight into how the IMF-AVT
solution scales up with the higher-order processes.

Let a scalar discrete-time process discretized at . = 0.1s be x5y = 0.8187x; + 0.1813u;.
The continuous-time ORM M(s) = 1/(s + 1) ZOH discretized at the same T, leads to the extended
process equivalent to (4), (outpul equalions also given):
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with r £ B9 The controller improvement step equivalent to explicitly minimizing the Q-function w.r.t.

the control input uy is 8} = C*(xF, ) = —:lmlnh- 7y 1, Ty, |xE. This improved linear-in-the-state
controller is embedded in the linear system of equations (12) that is solved for every iteration of
IMF-AVL Hach iteration produces a new sr;, that is tested on a test scenario where the uniformly
random reference inputs have amplitude #, € [—1;1] and switkch every 10 s. The ORM tracking
performance is then measured by the Euclidean vector norm ||y — yi [[2 while ||/, — [l serves as a
stopping condition when it drops below a prescribed threshold. The practically chserved convergence
process is shown in Figure 2 over the first 400 iterations, with ||/ — 7|2 still decreasing after
1000 iterations. While ||y} — 1412 is very small right from the first iterations, making the process
output practically overlap with the OEM's output.

Comment 7. For LT1 processes with an LQR-like c.f., an LTLORM and an LT] generative reference input
model, linear parameterizations of the extended Q-function of the form Q(xf, u;) = ®7 (xf, ug)m
is the well-known [9] form Q(xE,ug) = [(x5) T, (ug) TIP[(xE) T, (03} 7|7 of the quadratic Q-function,
with parameter 7t = 2ec{P) being the vectorized form of the symmelric positive-definite matrix P and
the basis function vector & (xF, ug) is obtained by the nonrepeatable terms of the Kronecker product
of all the QJ-function input arguments.

= 408 y y T

&

1Ttk

< 00

=y 1 1 |

? Q 100 ) 200 300 400
-3 iteration index §

?10- T T T

S0

%10—14

x ] 100 200 300 400

2 iteration index j

Figure 2. Convergence results of the linearly paramaterized iterative model-free approximate Value
[teration (LE-IMF-AV]) for the linear process example.

P14 42 IMF-AVI on the Nonlinear TITOAS Aerodyn.
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Molur,) = 905 x 10720 + 276 = 107 Yoo 4 1.25 x 10 4w, + 166 x 1079,
Folwn) = —18x10" 808 — 7.8 « 10 %ot 4+ 41 « 1070 +2.7 « 10802
+3.5 % 10 3w, — 0.014, (a4)
Myfay) = 595 x 10~ 2ad — 5.05 « 10~ Yoo + 1.02 ¢ 104w, + 161 1073,
Fulwn) = —2.56 % 07 Pw? + 400 x 10~ Vet + 316 x 10 Rar — 7.34 x 10-%w?

42,12 x 1075y, +9.13 x 1073,

Figure 3. The two-inputs-two-outputs acrodynamic system (TITOAS) experimental setup.
A zero-order hold on the inputs and a sampler on the outputs of (33} lead to an equivalent MI?

discrete-time model of sampling time T. = 0.15 and of relative degree 1 (one), suitable for input-state
data collection

P {"H-'l = fx, u ), . (35)
¥i = 806) = (@ 205 T,
where x; = [t ke O o i Wo ke D“*,aq;].r e R and u = [alm,uu]-r £ R The process’ dynamics
will not be used for leaming the control in the following,
P15
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Figure 4. Open-loop input-output (IO} data from the two-inputs—two-outputs aerodynamic system
(TITOAS) for Virtual Reference Feedback Tuning (WRFT) contreller tuning,

for @ as the least squares minimizer of Jyg{0) = i [lup — Clz.®)ep |5 where 6 = Li{z)u; =
Lz} i1, 2] 6 = Lz = L(z)ern eial T, [8hn izl = (M7 (z) — 12)95.1,9ia] . Here, Jyg(6)
is an approximation of the c.f. [3{; from (5) obtained for -t = 1. The contreller (36) will then close the
feedback control loop as inu, = Clz,8)(r. — ).

MNotice that, by formulation, the VRFT controller tuning aims to minimize the undiscounted
{7 = 1) [ijg from (5), but via the output feedback controller (36) that processes the feedback
control error ep = rp — ¥4 The same goal to minimize (5) is pursued by the subsequent IMF-AVI
design of a state-feedback controller tuning for the extended process, Nonlinear (in particular, linear)
state-feedback controllers can also be found by VRET as shown in [23,31], to serve as initializations
for the IMF-AVI, or possibly, even for Polt-like algorithms, However, should this not be necessary,
10 feedback controllers are much more data-efficient, requiring significantly less IO data to obtain
stabilizing controllers.

P16
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transition samples are shown in Figure 5 only for the process inputs and outputs, ORM's cutputs and
reference inputs, for the first 400 s (4000 samples) out of 7000 s.

T
i1}'—1 )

[} 50 100 150 200 @Sols) 300 350 400

ac) 100 200 time (3) 300 400

0 100 200 time (=) 300 400

0

& op

¢ .
3

0 100 200 pime {5) 300 400

o s Th 1B
L=

Figure 5. [0 data collection with the linear controller [35]: (a) wyy; (b} g (black), ﬂ,‘l (red}, rgy
P17 {black dotted); (¢) uiz; () vz (black), 3% (red), 7y (black dotted).
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This basis functions selection is inspired by the shape of the quadratic Q-function resulting from
LTI processes with LOR-like penalties (see Cannment 7). It is expected to be a sensible choice since the
TITOAS process is a nonlinear one, therefore the quadratic Q-function may under-parameterize the
true Q-function. Nevertheless, its computational advantage incentives the testing of such a solution.
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Figure 7. The IMF-AVI convergence on TITOAS: u', wi'y, (red); i1, 2, My 1. Yy 2 for LP-IMF-AVL
{black), for NP-IMF-AVI with NNs (blue), for the initial VRFT controller used for transitions
collection {green).
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Figure 8. The LP-IMF-AV] parameters convergence.

The NP-IMF-AVI proposed herein consists of two steps for each iteration |, The first one calculates
the targets for the NN Qixf, uy, m;) (having inputs [(x{) 7, (ug) 7| and current iteration weights ;)
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if = Sxf resulting in the extended state-space model if” =8 -E(S_'if, u; ) that still preserves the
MDOF property.

5, Conclusions

_Th_ié-pa;ér_pm;';azn;ﬁpr;afd;aip for an IMF-AVI ADP learning scheme dedicated to the
challenging problem of ORM tracking control for a high-order real-world complex nonlinear process
with urknown dynamics. The investigation revolves around a comparative analysis of a linear vs.

-a nenlinear parameterization of the IMF-AVI approach. Learning high performance state-feedback

control under the model-free mechanism offered by IMF-AVI builds upon the inpul-states—oulputs
transition samples collection step that uses an initial exploratory linear cutput feedback controller that

iz also designed in a model-free setup using VRFT. From the practitioners’ viewpaint, the NN-based |

implementation of IMF-AV] is more appealing since it easily scales up with problem dimension and
automatically manages the basis functions selection for the function approximators.

Future work attempts to validate the proposed design approach to more complex high-order
nonlinear processes of practical importance.
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