
  

 

Abstract— Linearly and nonlinearly parameterized 

approximated value iteration (VI) approaches used for output 

reference model (ORM) tracking control are proposed herein. 

The ORM problem is of significant interest in practice since, by 

selecting a linear ORM, the closed-loop control system is 

indirectly feedback linearized and value iteration (VI) offers the 

means to achieve this feedback linearization in a model-free 

manner. We show that a linearly parameterized VI such as the 

one used for linear systems is still effective for a nonlinear 

complex process and on similar performance level with that of a 

neural-network (NN)-based implementation that is more 

complex and takes significantly more time to learn. While the 

nonlinearly parameterized NN-based VI proves to be generally 

more robust to parameters selection, to dataset size and to 

exploration strategies. The case study is aimed at ORM 

tracking of a nonlinear two inputs-two outputs aerodynamic 

process as a representative high dimensional system. 

Convergence analysis accounting for approximation errors in 

the VI is also proposed. 

I. INTRODUCTION 

The output reference model (ORM) tracking problem is 
of significant interest in practice, especially for nonlinear 
systems control, since by selection of a linear ORM, 
feedback linearization is enforced on the controlled process. 
Then, the closed-loop control system can act linearly in a 
wide range. Subsequently, linearized control systems are 
then subjected to higher level learning schemes such as the 
Iterative Learning Control ones, with practical implications 
such as primitive-based learning [1]. 

Suitable ORM selection is not straightforward. It has to 
be matched with the process bandwidth and with several 
process nonlinearities such as, e.g., input and output 
saturations. Additionally, dead-time and non-minimum-phase 
(NMP) characters of the process cannot be compensated for 
and must be reflected in the ORM. Apart from this 
information that can be measured or inferred from working 
experience with the process, avoiding knowledge of the 
process’ state transition function (process dynamics) – the 
most time consuming to identify and the most uncertain part 
of the process – in designing high performance control is 
very attractive in practice. 

Reinforcement Learning (RL) has developed both from 
the artificial intelligence (AI), and from classical control 
theory [2]–[5], where it is better known as Approximate 
(Adaptive, Neuro) Dynamic Programming (ADP). Certain 
ADP variants can be used to ensure ORM tracking control 
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without knowing the state-space dynamics of the controlled 
process, which is of high importance into the practice of 
model-free and data-driven control schemes that are able to 
compensate for poor modeling and uncertainty in the 
process. Thus, model-free ADP only uses data collected 
from the process called state transitions. While plenty of 
mature ADP schemes already exist in the literature, tuning 
such schemes requires significant experience. Although 
successful stories on RL and ADP applied to large state-
action spaces are reported mainly with AI [6], in control 
theory, most approaches use low-order processes as 
representative case studies and mainly in linear quadratic 
regulator (LQR)-like settings. While the reference input 
tracking control problem has been tackled before for linear 
time-invariant (LTI) processes, known as Linear Quadratic 
Tracking (LQT) [7], [8], model-free ORM tracking for 
nonlinear processes was rarely addressed [9], [10]. 

The iterative model-free approximate Value Iteration 
(IMF-AVI) proposed in this work belongs to the family of 
batch-fitted Q-learning schemes [11] also known to the ADP 
community as action-dependent heuristic dynamic 
programming (ADHDP), popular and representative ADP 
approaches owing to their simplicity and model-free 
character. These schemes have been implemented in many 
variants: online vs. offline, adaptive or batch, for 
discrete/continuous states and actions, with/without function 
approximators, such as Neural Networks (NNs). 

Suitable exploration that covers well the state-action 
space is not trivially ensured but it is critical to ADP control. 
Randomly generated control input signals will almost surely 
fail to guide the exploration in the entire state-action space, 
at least not in a reasonable amount of time. Then, a priori 
designed feedback controllers can be used under a variable 
reference input serving to guide the exploration [9]. 
However, such input-output (IO) or input-state feedback 
controllers were traditionally not to be designed without 
using a process model, until the advent of data-driven model-
free controller design techniques that have appeared from the 
field of control theory: Virtual Reference Feedback Tuning 
(VRFT) [12], Iterative Feedback Tuning [13], data-driven 
Iterative Learning Control [1], [14], Model Free (Adaptive) 
Control [15], [16]. 

The case study deals with the challenging ORM tracking 
control for a nonlinear real-world two-inputs two-outputs 
aerodynamic process (TITOAP) having six natural states that 
are extended with four additional ones according to the 
proposed theory. The process uses aerodynamic thrust to 
create vertical (pitch) and horizontal (azimuth) motion. It is 
shown that IMF-AVI can be used to attain ORM tracking of 
first order lag type, despite the high order of the 
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multivariable process, and despite the pitch motion being 
naturally oscillatory and the azimuth motion practically 
behaving close to an integrator. The state transitions dataset 
is collected under the guidance of an input-output (IO) 
feedback controller designed using model-free VRFT. To the 
best of authors’ knowledge, the ORM tracking context with 
linear parameterizations was not studied before for high-
order nonlinear real-world processes. Moreover, theoretical 
analysis shows convergence of the IMF-AVI while 
accounting for approximation errors. 

Section II formulates the ORM tracking control problem, 
while Section III solves it using an IMF-AVI approach. 
Section IV validates the approach on the TITOAP. 

II. MODEL REFERENCE CONTROL FOR UNKNOWN 

NONLINEAR PROCESSES 

A. The Process 

A discrete-time nonlinear unknown open-loop stable 
minimum-phase (MP) state-space deterministic strictly 
causal process is defined as 
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where k  indexes the discrete time, 
n

X

T

nkkk xx  ]...[ ,1,x  is the n -dimensional state 

vector, u

u

m

U

T

mkkk uu  ],...,[ ,1,u  is the control input 

signal, p

Y

T

pkkk yy  ],...,[ ,1,y  is the measurable 

controlled output, 
XUX :f  is an unknown 

nonlinear system function continuously differentiable within 
its domain, 

YX :g  is an unknown nonlinear 

continuously differentiable output function. Initial conditions 
are not accounted for at this point. Let known 

YU  ,  and 

unknown 
X  domains be compact convex. Equation (1) is a 

general un-restrictive form for most controlled processes. 
Two widely used data-driven assumptions are: 

A1: (1) is fully state controllable with measurable states. 

A2: (1) is input-to-state stable on known domain 
XU  . 

A1 and A2 are common to data-driven control, not 
verifiable with unknown model (1), but derivable from 
literature and from working experience with the process. If 
above information is not deducible, the user can try process 
control under the safety operating conditions managed by the 
supervisory control. Input to state stability (A2) is mandatory 
if open-loop input-state samples are collected to be used for 
learning state feedback control. A2 can be omitted if a 
stabilizing state-fedback controller exists and it is used just 
for input-state data collection. 

B. ORM tracking problem formulation 

Let the discrete-time known open-loop stable minimum-
phase (MP) state-space deterministic strictly causal ORM be 
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where m

mm

n

X

Tm

nk

m

k

m

k xx  ],...,[ ,1,x  is the state vector of 

the ORM, p

R

T

pkkk m
rr  ],...,[ ,1,r  is the reference input 

signal, p

Y

Tm

pk

m

k

m

k m
yy  ],...,[ ,1,y  is the ORM’s output, 

mmm XRX

m :f , 
mm YX

m :g  are known 

nonlinear mappings. Initial conditions are zero unless stated 
otherwise. Note that m

kkk yyr ,,  have size p  for square 

feedback CSs. If the ORM (2) is LTI, it is always possible to 
express the ORM as an IO LTI transfer matrix 

k

m

k z rMy )( , 

where )(zM  is commonly an asymptotically stable unit gain 

rational transfer matrix and 
kr  is the reference input that 

drives both the feedback CS and the ORM. We introduce an 
extended process comprising of the process (1) coupled with 
the ORM (2). For this, the reference input 

kr  is treated as a 

set of measurable exogenous signals (possibly seen as 
disturbance) that evolve as )(1 k

m

k rhr 
, with known 

nonlinear mmm RR :h . (.)m
h  is as a generative model for 

the reference input. 

Consider next that the extended state-space model that 
consists of (1), (2) and the state-space generative model of 
the reference input signal is, in the most general form: 
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where E

kx  is called the extended state vector. Note that the 

extended state-space fulfils the Markov property. The ORM 
tracking problem is defined in an optimal control framework. 
Thus, the infinite horizon cost function (c.f.) to be minimized 
starting with 

0x  is [4] 
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In (4), the discount 10   sets the controller’s horizon, 

1  is usually used to guarantee learning convergence to 

optimal control. xxx
T

2
 is the Euclidean norm of the 

column vector x , 0),()(),(
2

2
 k

E

kk

E

k

m

kk

E

kMR uxyxyuxU  is 

the stage cost where measurable 
1ky  depends via unknown 

) (g  on 
kk ux ,  ((1) is strictly causal) and 

MRU  penalizes the 

deviation of 
1ky  from the ORM’s output m

k 1y .  
n

θ  

parameterizes a nonlinear state-feedback admissible 

controller [4] defined as ),( θxu E

k

def

k C , which used in (3) 

makes all CS’s trajectories depend on θ . Any stabilizing 

controller sequence (or controller) rendering a finite c.f. is 
called admissible. A finite 

MR$  holds if 
kε  is a square-

summable sequence, ensured by an asymptotically stabilizing 
controller if 1  or by a stabilizing controller if 1 . 
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)($ θMR
 in (4) is the value function of using controller )(θC . 

The optimal controller ),( *** θxu E

kk C  minimizing (4) is 

 ).,($minarg 0

*
θxθ

θ

E

MR  (5) 

Nonlinear ORM tracking can be attempted, however, an 

LTI ORM forces a very desirable indirect feedback CS 

linearization, where the LTI CS’s behavior is well 

extrapolated in a wide range [1]. Therefore, the ORM 

tracking problem’s purpose herein, is to ensure 0MRU  

when 
kr  drives both the CS and the ORM. 

As classical control guidelines, the process time delay and 

non-minimum-phase (NMP) character should also be 

contained in )(zM . Still, )(zM ’s NMP zeroes render it non-

invertible and complicates the subsequent VRFT IO control 

design [17], motivating the MP assumption on the process. 

Depending on the learning scenario, the user may select a 

piece-wise constant generative model for the reference input 

signal such as 
kk rr 1
, or a ramp-like model, a sine-like 

model, etc. In all cases, the states of the generative model are 

known, measurable and need to be introduced in the 

extended state vector, to fulfil the Markov property of the 

extended state-space model. For ORM tracking practical 

applications, the CS’s outputs are required to track the 

ORM’s outputs when both the ORM and the CS are driven 

by the piece-wise constant reference input signal captured by 

the generative model 
kk rr 1
. This model will be used 

herein for learning ORM tracking controllers. 

III. SOLVING THE ORM TRACKING PROBLEM 

For unknown extended process dynamics (3), 
minimization of (4) will be attempted by an iterative model-
free approximate Value Iteration (IMF-AVI). A c.f. that 
extends )($ E

kMR x  called the Q-function (or action-value 

function) is first defined for each state-action pair. Let the Q-
function of acting as 

ku  in state E

kx  and then following the 

control (policy) )( E

kk C xu   be 

 )).(,(),(),( 11

E

k

E

k

C

k

E

kk

E

k

C C  xxuxux U  (6) 

The optimal Q-function ),(*

k

E

k ux  corresponding to the 

optimal controller obeys Bellman’s optimality equation 

  ,))(,(),(min),( 11

*

(.)

* E

k

E

kk

E

k
C

k

E

k C  xxuxux U  (7) 

where the optimal controller and optimal Q-functions are 

).,(min),(),,(minarg)(
(.)

***

k

E

k

C

C
k

E

kk

E

k

C

C

E

kk C uxuxuxxu   (8) 

Then, for ),($min)($*
uxx

u

E

kMR

E

kMR   it follows that 

))(,()($ **** E

kk

E

k

E

kMR C xuxx  . Implying that finding *  is 

equivalent to determining the optimal c.f. *$MR
. 

The optimal Q-function and optimal controller can be 
found using either Policy Iteration (PoIt) or Value Iteration 

(VI) strategies. For continuous state-action spaces, IMF-AVI 
is one possible solution, using different linear and/or 
nonlinear parameterizations for the Q-function and/or for the 
controller. NNs are most widely used as nonlinearly 
parameterized function approximators. As it is well-known, 
VI alternates two steps: the Q-function estimate update step 
and the controller improvement step. For example, linear 
parameterizations of the Q-function allow analytic 
calculation of the improved controller as in 

 ),,,(minarg),(
~

πuxπx k

E

k

C

C

E

kC   (9) 

by directly minimizing ),,( πux k

E

k

C  w.r.t. 
ku , where the 

parameterization π  is moved from the controller into the Q-

function. In these special case, it is possible to eliminate the 
controller approximator and use only one for the Q-function 

 . Then, given a dataset D of transition samples, 

NkD E

kk

E

k ,1)},,,{( 1  xux  the IMF-AVI amounts to solving 

the following optimization problem (OP) at each iteration 
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,(),(),,(minarg ππxxuxπuxπ
π
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 (10) 

which is a Bellman residual minimization problem where 
the (usually separate) controller improvement step is now 
embedded inside the OP (10). 

For a linear parameterization πuxΦπux ),(),,( k

E

k

T

k

E

k   

using a set of 
n  basis functions of the form 

)],(),...,,([),( 1 k

E

knk

E

kk

E

k

T
uxuxuxΦ


 , the least squares 

solution to (10) is equivalent to solving the following 

overdetermined linear system of equations w.r.t. 
1jπ : 
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Starting with an initial parameter 
0π  of the Q-function, 

the IMF-AVI that allows explicit controller improvement 
calculation as in (9), embeds both VI steps into solving (11). 
Linearly parameterized IMF-AVI (LP-IMF-AVI) are 
validated in the case study and compared to nonlinearly 
parameterized IMF-AVI (NP-IMF-AVI). IMF-AVI 
convergence is next analyzed under approximation errors. 

A. IMF-AVI convergence with approximation errors  

The proposed iterative model-free VI-based Q-

learning Algorithm 1 consists of the next steps: 

S1. Select an initial (not necessarily admissible) controller 

0C  and an initialization value ),(,0),(0 k

E

kk

E

k uxux   of 

the Q-function. Initialize iteration index 1j . 

S2. Use the one step back-up equation for the Q-function 

 

)}.,(),({min

))(,(),(),(

11

1111

uxux

xxuxux

u

E

kjk

E

k

E

kj

E

kjk

E

kk

E

kj C









U

U
. (12) 

S3. Improve the controller using the equation 
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 ),(minarg)( uxx
u

E

kj

E

kjC  . (13) 

S4. Set 1 jj  and repeat steps S2, S3, until convergence. 

Lemma 1. For an arbitrary sequence of controllers }{ j , 

define the VI-like update for extended c.f. 
jξ  as [18] 

 ))(,(),(),( 111

E

kj

E

kjk

E

kk

E

kj   xxuxux U . (14) 

If 0),(),( 00  k

E

kk

E

k uxux , then ),(),( k

E

kjk

E

kj uxux  . 

Proof. For limited space, see [21]. 

Lemma 2. For the sequence }{ j  from (12), under 

controllability assumption A1, it is valid that: 

1) ),(),(0 k

E

kk

E

kj B uxux   with ),( k

E

kB ux  an upper 

bound. 

2) If there exists a solution ),(*

k

E

k ux  to (8), then 

),(),(),(0 *

k

E

kk

E

kk

E

kj B uxuxux  . 

Proof. For limited space, see [21]. 
Theorem 1. For the extended process (3) with c.f. (4), under 

A1, A2, with the sequences }{ jC  and )},({ k

E

kj ux  generated 

by the Q-learning Algorithm 1, it is true that: 

1) )},({ k

E

kj ux  is a non-decreasing sequence for which 

),(),(1 k

E

kjk

E

kj uxux  
 holds, ),(, k

E

kj ux  and 

2) *lim CC j
j




 and ),(),(lim *

k

E

kk

E

kj
j

uxux 


. 

Proof. For limited space, see [21]. 

Comment 2. (12) is practically solved in the sense of 

the OP (10) (either as a linear or nonlinear regression) using 

a batch (dataset) of transition samples collected from the 

process using any controller, i.e. in “off-policy” mode. While 

the step (13) can be solved either as a regression or explicitly 

analytically when the expression of ),( k

E

kj ux  allows it. 

Moreover, (12) and (13) can be solved batch-wise either 

online or offline. When the batch of transition samples is 

updated each sample time, the VI-scheme becomes adaptive. 
Comment 3. Theorem 1 proves the VI-based learning 

convergence of the sequence of Q-functions 

),(),(lim *

k

E

kk

E

kj
j

uxux 


 assuming that the true Q-

function parameterization is used. In practice, this is rarely 
possible, such as, e.g. in the case of LTI systems. For general 
nonlinear processes of type (1), different function 
approximators are employed for the Q-function, most 
commonly using NNs. Then the convergence of the VI Q-
learning scheme is to a suboptimal controller and to a 
suboptimal Q-function, owing to the approximation errors. A 
convergence proof of the learning scheme under 
approximation errors is next shown and accounts for generic 
parameterizations of the Q-function [19]. 

Let the IMF-AVI Algorithm 2 consists of the steps: 

S1. Select an initial (not necessarily admissible) controller 

0

~
C  and an initialization value ),(,0),(

~
0 k

E

kk

E

k uxux   of 

the Q-function. Initialize iteration 1j . 

S2. Use the update equation for the approximate Q-function 
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uxxxuxux

u
U

U  (15) 

S3. Improve the approximate controller using 

 ),(
~

minarg)(
~

uxx
u

E

kj

E

kjC  . (16) 

S4. Set 1 jj  and repeat steps S2, S3, until convergence. 

Comment 4. In Algorithm 2, the sequences )}(
~

{ E

kjC x  and 

)},(
~

{ k

E

kj ux  are approximations of the true sequences 

)}({ E

kjC x  and )},({ k

E

kj ux . Since the true Q-function and 

controller parameterizations are not known, (15) must be 
solved in the sense of the OP (10) with respect to the 

unknown 
j

~ , in order to minimize the residuals 
j  at each 

iteration. If the true parameterizations of the Q-function and 

of the controller were known, then 0 j
 and the IMF-AVI 

updates (15), (16) coincide with (12), (13), respectively. 
Next, let the following assumption hold. 

A3. There exist two positive scalar constants ,  such 

that  10 , ensuring 
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U

U
 (17) 

Comment 5. Inequalities from (17) account for nonzero 

positive or negative residuals 
j , i.e. for the approximation 

errors in the Q-function, since ),(
~

k

E

kj ux  can over- or 

under-estimate )},(
~

),({min 11 uxux
u

E

kjk

E

k U in (15). ,  

can span large intervals (  close to 0 and   very large). 

Hope is that, if ,  are close to 1 -meaning low 

approximation errors-, then the entire IMF-AVI process 

preserves 0 j
. In practice, this amounts to using high 

performance approximators. For example, with NNs, adding 
more layers and more neurons, enhances the approximation 
capability and theoretically reduces the residuals in (15). 

Theorem 2. Let the sequences )}(
~

{ E

kjC x  and )},(
~

{ k

E

kj ux  

evolve as in (15), (16), the sequences )}({ E

kjC x  and 

)},({ k

E

kj ux  evolve as in (12), (13). Initialize 

),(,0),(),(
~

00 k

E

kk

E

kk

E

k uxuxux   and let A3 hold. Then 

 ),(),(
~

),( k

E

kjk

E

kjk

E

kj uxuxux   (18) 

Proof. For limited space, see [21]. 
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Comment 6. Theorem 2 shows that the trajectory of 

)},(
~

{ k

E

kj ux  closely follows that of )},({ k

E

kj ux  in a 

bandwidth set by , . It does not ensure that )},(
~

{ k

E

kj ux  

converges to a steady-state value, but in the worst case, it 

oscillates around ),(lim),(*

k

E

kj
j

k

E

k uxux 


 in a band that 

can be made arbitrarily small by using powerful 
approximators. By minimizing over 

ku  both sides of (17), 

similar conclusions result for the controller sequence 

)}(
~

{ E

kjC x  that closely follows )}({ E

kjC x . 

IV. VALIDATION CASE STUDY ON THE TITOAP 

The ORM tracking problem on the more challenging 
TITOAP position control by Inteco [20] is solved. The 
azimuth motion acts as an integrator while the pitch 
positioning is affected differently by the gravity for the 
up/down motions. Coupling between the channels is present. 
The process model is [20]: 
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(19) 

where )(sat  is the saturation function on ]1,1[ , 
1uU h   is 

the azimuth motion control input, 
2uU v   is the vertical 

motion control input, ],[)( 1  yradh
 is the azimuth 

angle, ]2/,2/[)( 2  yradv
 is the pitch angle, other 

states being described in [20], [22]. Nonlinear maps 

)( ),( ),( ),( hhvv  hhvv FMFM  were polynomially fitted 

from experimental data for )4000;4000(,  hv
 [20]. 

An equivalent MP discrete-time model of relative degree 
one at sampling time s 1.0sT  obtianed from (1) is suitable 

for input-state data collection where 
6

,,,,,, ],,,,,[  T

kvkvkvkhkhkhkx , 2

2,1, ],[  T

kkk uuu . 

The process’s dynamics will not be used for learning ORM 
tracking in the following. 

A. Initial linear MIMO controller with model-free VRFT 

An initial model-free multivariable 2x2 IO controller is 
first designed using model-free VRFT, as previously 
described in [9]. This controller will be used afterwards for 
input-state transition samples collection. The ORM to be 
tracked is ))(),((diag)( 21 zMzMz M  where )(),( 21 zMzM  

are the discrete-time counterparts of 

)13/(1)()( 21  ssMsM  obtained for a sampling period of 

s 1.0sT . The VRFT prefilter is chosen as )()( zz ML  . A 

pseudo-random binary signal of amplitude ]1.0;1.0[  is used 

on both inputs 
2,1, , kk uu  to open-loop excite the pitch and 

azimuth dynamics. The IO data }~,~{ kk yu  is collected with 

low-amplitude zero-mean inputs 
2,1, , kk uu , to maintain the 

process linearity around the mechanical equilibrium, such 
that to fit the linear VRFT design framework. The linear 
VRFT output feedback error diagonal controller is 

  )1/()(),();( 1

2211

 zzPzPdiagz θC        (20) 

 

,5467.01540.16228.0)(

,0777.09173.09303.38689.59341.2)(

21

22

4321

11









zzzP

zzzzzP  

where the parameter vector θ  groups all the coefficients of 

)(),( 2211 zPzP . The output feedback controller (20) processes 

the feedback control error 
kkk yre   in closed loop. 

Nonlinear (in particular, linear) state-feedback controllers 

can also be found by VRFT as shown in [23] to serve as 

initializations for the IMF-AVI. Should this not be 

mandatory, IO feedback controllers should be first designed 

since they are very data-efficient. 

B. Collecting more input-state-output data 

ORM tracking is next improved to make the closed loop 
CS better match the ORM )(zM . With controller (20) used 

in closed-loop to stabilize the process, input-state-output 
data is collected for 7000 s. The reference inputs with 

amplitudes ]1.1;4.1[],2;2[ 2,1,  kk rr  model successive 

steps that switch their amplitudes uniformly random at 17 s 

and 25 s, respectively. On the outputs 
2,1, , kk uu  of both 

controllers )(),( 2211 zCzC , an additive noise is added at every 

2nd sample as an uniform random number in ]6.1;6.1[  

for )(11 zC  and in ]7.1;7.1[  for )(22 zC . These additive 

disturbances provide an appropriate exploration, visiting 
many combinations of input-states-outputs. The computed 

controller outputs are saturated to ]1;1[)(),( 2,1, kk usatusat  

after which they are sent to the process. The reference inputs 

2,1, , kk rr  drive the ORM: 

 




















.][][

03278.09672.0

,03278.09672.0

2,1,2,1,

2,2,2,1

1,1,1,1

Tm

k

m

k

Tm

k

m

k

m

k

k

m

k

m

k

k

m

k

m

k

xxyy

rxx

rxx

y

 (21) 

The ORM’s states (also ORM’s outputs) are collected 
along with the process’ states and controls, in order to build 
the extended process state (3). Let this extended state be: 

   10

)(

2,1,

)(

2,1, ][  TT

kkk

m

k

m

k

E

k

T
k

Tm
k

rrxx xx

rx


 (22) 

Essentially, the collected E

kx  and 
ku  builds the transitions 

dataset    },,,...,,,{ 700017000070000211

EEEED xuxxux  for 

70000N , used for the IMF-AVI implementation. After 

collection, an important processing step is performed related 
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to data normalization. Some states of the process will be 
replaced by their scaled version. Thus, the transformed 

process state is ,,25/
~

,7200/~[~
,,,,, khkhkhkhkhk x  

6

,,,,, ],40/
~

,3500/~  T

kvkvkvkvkv
. The reference 

inputs, the ORM states and the saturated process inputs 
already have values around ]1;1[ . The normalized states will 

finally serve for state feedback. 

Note that the reference input signals 
2,1, , kk rr  used as 

sequences of constant amplitude steps for ensuring good 
exploration do not have a generative model that obeys the 
Markov assumption. To avoid this problem, the piece-wise 
constant reference input generative model 

kk rr 1
 is 

employed by eliminating from the dataset D  all the 
transition samples that correspond to switching reference 

inputs instants (i.e., when at least one of 
2,1, , kk rr  switches). 

C. Learning control with linearly parameterized IMF-AVI 

Details of the linearly parameterized IMF-AVI (LP-IMF-
AVI) applied to the ORM tracking control problem are next 
provided. The stage cost is defined 

2

2,2,

2

1,1, )()()( m

kk

m

kk

E

k yyyy xU  and the discount factor in 

MR$  is 95.0 . The Q-function   is linearly parameterized 

using the basis functions 

 

.],...,,,...,,

,,,,...,,,[),(

78

2,1,1,2,,2,1,1,1,2,1,

2

2,

2

1,

2

6,

2

1,

2

2,

2

1,





kkk

m

kk

m

kk

m

k

m

k

m

k

kkkk

m

k

m

kk

E

kc

uurxuxrxxx

uuxrxxT
uxΦ  (23) 

The controller improvement step at each iteration of the 
LP-IMF-AVI explicitly minimizes the Q-function. Solving 
the linear system of equations resulting after setting the 
derivative of ),( k

E

k ux  w.r.t. 
ku  equal to zero, it results 

 

.
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)(

,
)(

)(

2

2
),(

~~

6,77,5,75,4,723,68,2,63,

1,57,2,50,1,22,33,1,23,2

6,76,5,74,4,713,67,2,62,
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E
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E
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(24) 

The improved controller is embedded in the system (11) 
of 70000 linear equations with 78 unknowns corresponding 

to the parameters of .78

1 jπ  This linear system (11) is 

solved as a least squares regression with each of the 50 
iterations of the LP-IMF-AVI. The practical convergence 

results are shown in Fig. 1 for 
21 jj ππ  and for the ORM 

tracking performance in terms of a normalized c.f. 

)||||||(||/1 22,2,21,1,

m

kk

m

kktest yyyyNJ   measured for 

2000N  samples over 200 s in the test scenario displayed 

in Fig. 2. The test scenario has of a sequence of piece-wise 
constant reference inputs that switch at different moments of 

time for the azimuth and pitch (
1,ky  and 

2,ky ), to illustrate 

the coupling behavior between the two control channels and 

the extent by which the learned controller manages to 
achieve the decoupled behavior requested by the ORM. 

 
Fig. 1.  The LP-IMF-AVI convergence on TITOAP. 

The best LP-IMF-AVI controller found over the 50 
iterations results in 0017.0testJ  (tracking results in black 

lines in Fig. 2), which is more than 6 times smaller than the 
tracking performance recorded with the VRFT controller 
used for transition samples collection, for which 

0103.0testJ  (tracking results in green lines in Fig. 2). 

D. Learning control with nonlinearly parameterized IMF-

AVI using NNs 

The previous LP-IMF-AVI for ORM tracking control 
learning scheme is challenged by a nonlinearly 
parameterized IMF-AVI (NP-IMF-AVI) implementation 
with NNs. In this case, two NNs are needed to approximate 
the Q-function and the controller. The procedure follows the 
NP-IMF-AVI implementation described in [9]; it uses Q-
function estimate minimization by enumerating discrete 
actions [23], [24]. The trained NN controller still outputs 
continuous actions. The same dataset of transition samples is 
used as was previously used for the LP-IMF-AVI. The 
controller NN (C-NN) is a 10–3–2 (10 inputs because 

10E

kx , 3 neurons in the hidden layer and 2 outputs for 

2,1, , kk uu ) with tanh  activation function in the hidden layer 

and linear output activation. The Q-function NN (Q-NN) is 
12–25–1 with the same parameters as C-NN. Initial weights 
of both NNs are uniform random numbers with zero-mean 
and variance 0.3. Both NNs are to be trained using scaled 
conjugate gradient for maximum 500 epochs. The available 
dataset is randomly divided into training (80%) and 
validation data (20%). Early stopping during training is 
enforced after 10 increases of the training c.f. mean sum of 
squared errors (MSSE)) evaluated on the validation data. 
The ORM tracking with the best NP-IMF-AVI controller 
producing the lowest 0017.0testJ  is shown in Fig. 2.  

With the best ORM tracking not better than that with the 
LP-IMF-AVI controllers, extensive reruns of the NP-IMF-
AVI convergent process under different dataset sizes, 
different exploration strategies and different Q-NN and C-
NN architectures always produced converging learning 
process. The LP-IMF-AVI convergence is more sensitive to 
the mentioned aspects. The main reason appears to be the 
under-parameterization of the Q-function, hence the 
quadratic form may be too limited with more nonlinear 
processes. This explains for a violation of the low 
approximation error assumptions of Theorem 2. Both LP-
IMF-AVI and NP-IMF-AVI well linearize the CS to ensure 
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ORM tracking [25], recommending further application of 
data-driven ILC [26] for primitive-based learning [27]. 

 
Fig. 2.  The IMF-AVI convergence on TITOAP: m

ky 1,
, m

ky 2,
 (red); 

1,ku , 
2,ku , 

1,ky , 
2,ky  for LP-IMF-AVI (black), for NP-IMF-AVI with NNs (blue), for 

the initial VRFT controller used for transitions collection (green). 

V. CONCLUSION 

This paper proves an IMF-AVI ADP scheme for the 
challenging ORM tracking of a high-order real-world 
complex nonlinear process with unknown. Learning high 
performance state-feedback control under the model-free 
mechanism offered by ADP builds upon the input-states-
outputs transition samples collected with a model-free linear 
output feedback controller designed using VRFT. 
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