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capitolului curent, in intregime de la punctul initial al prelurii.
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from the initial point till the last page of the current chapter, entirely.
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Fisa de argumentare a calificarii

Nr. Descrierea situatiei care este incadrata drept plagiat Se

crt. confirmd

1. Preluarea identica a unor pasaje (piese de creatie de tip text) dintr-o opera autentica publicata, fara precizarea intinderii §i mentionarea v
provenientei si insusirea acestora intr-o lucrare ulterioara celei autentice.

2. Preluarea a unor pasaje (piese de creatie de tip text) dintr-o opera autentica publicatd, care sunt rezumate ale unor opere anterioare operei
autentice, fara precizarea intinderii si mentionarea provenientei si insusirea acestora intr-o lucrare ulterioara celei autentice.

3. Preluarea identica a unor figuri (piese de creatie de tip grafic) dintr-o opera autentica publicata, fard mentionarea provenientei si insusirea v
acestora intr-o lucrare ulterioara celei autentice.

4. Preluarea identica a unor tabele (piese de creatie de tip structura de informatie) dintr-o operd autentica publicata, fara mentionarea
provenientei si insusirea acestora intr-o lucrare ulterioara celei autentice.

5. Republicarea unei opere anterioare publicate, prin includerea unui nou autor sau de noi autori fara contributie explicita in lista de autori

6. Republicarea unei opere anterioare publicate, prin excluderea unui autor sau a unor autori din lista initiald de autori.

7. Preluarea identica de pasaje (piese de creatie) dintr-o opera autentica publicatd, fara precizarea intinderii si mentionarea provenientei, fara
nici o interventie personala care s justifice exemplificarea sau critica prin aportul creator al autorului care preia si insusirea acestora intr-o v
lucrare ulterioara celei autentice.

8. Preluarea identicd de figuri sau reprezentari grafice (piese de creatie de tip grafic) dintr-o opera autentica publicata, fara mentionarea

provenientei, fara nici o interventie care s& justifice exemplificarea sau critica prin aportul creator al autorului care preia $i insusirea acestora
intr-o lucrare ulterioara celei autentice.

9. Preluarea identica de tabele (piese de creatie de tip structura de informatie) dintr-o opera autentica publicata, fara mentionarea provenientei,
fara nici o interventie care sa justifice exemplificarea sau critica prin aportul creator al autorului care preia si insugirea acestora intr-o lucrare
ulterioard celei autentice.

10. | Preluarea identica a unor fragmente de demonstratie sau de deducere a unor relatii matematice care nu se justifica in regasirea unei relatii
matematice finale necesare aplicarii efective dintr-o opera autentica publicata, fara mentionarea provenientei, fara nici o interventie care sa
justifice exemplificarea sau critica prin aportul creator al autorului care preia si insusirea acestora intr-o lucrare ulterioara celei autentice.

1. Preluarea identica a textului (piese de creatie de tip text) unei lucrari publicate anterior sau simultan, cu acelasi itlu sau cu titlu similar, de un
acelagi autor / un acelasi grup de autori in publicatii sau edituri diferite.

12. Preluarea identica de pasaje (piese de creatie de tip text) ale unui cuvant inainte sau ale unei prefete care se refera la doua opere, diferite,
publicate in doud momente diferite de timp.

Alte argumente particulare: a) Preludrile de poze nu indica sursa, locul unde se afla, autorul real sau posibil.

Nota:
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a) Prin ,provenientd” se intelege informatia din care se pot identifica cel putin numele autorului / autorilor, titlul operei, anul aparitiei.

b) Plagiatul este definit prin textul legii'.

, ...plagiatul — expunerea intr-o operd scrisd sau o comunicare orala, inclusiv in format electronic, a unor texte, idei, demonstratii, date, ipoteze,
teorii, rezultate ori metode stiintifice extrase din opere scrise, inclusiv in format electronic, ale altor autori, fara a mentiona acest lucru i fara a
face trimitere la operele originale...”.

Tehnic, plagiatul are la baza conceptul de piesé de creatie care?:

,-.-este un element de comunicare prezentat in forma scrisa, ca text, imagine sau combinat, care poseda un subiect, o organizare sau o
constructie logica si de argumentare care presupune nigte premise, un rationament gi o concluzie. Piesa de creatie presupune in mod necesar
o forméd de exprimare specificd unei persoane. Piesa de creatie se poate asocia cu intreaga operd autentica sau cu o parte a acesteia...”

cu care se poate face identificarea operei plagiate sau suspicionate de plagiat3:

,...O operd de creafie se gaseste in pozitia de opera plagiata sau opera suspicionata de plagiat in raport cu o altd opera considerata autentica

dacé:

i) Cele doud opere trateaza acelasi subiect sau subiecte inrudite.

i) Opera autentica a fost facuta publica anterior operei suspicionate.

fii) Cele doud opere contin piese de creafie identificabile comune care poseda, fiecare in parte, un subiect si o forma de prezentare bine
definita.

iv) Pentru piesele de creafie comune, adic prezente in opera autentica si in opera suspicionatd, nu exista o mentionare explicita a
provenientei. Mentionarea provenientei se face printr-o citare care permite identificarea piesei de creatie preluate din opera autentica.

v) Simpla mentionare a titlului unei opere autentice intr-un capitol de bibliografie sau similar acestuia fara delimitarea intinderii preludrii
nu este de natura sa evite punerea in discutie a suspiciunii de plagiat.

vi) Piesele de creatie preluate din opera autentica se utilizeaza la constructii realizate prin juxtapunere fara ca acestea s fie tratate de
autorul operei suspicionate prin pozitia sa explicita.

Vi) In opera suspicionata se identifica un fir sau mai multe fire logice de argumentare i tratare care leagd aceleasi premise cu aceleasi
concluzii ca in opera autentica...”

1 Legea nr. 206/2004 privind buna conduité in cercetarea stiintifica, dezvoltarea tehnologica si inovare, publicaté in Monitorul Oficial al Roméniei, Partea |, nr. 505
din 4 iunie 2004

2|SOC, D. Ghid de actiune impotriva plagiatului: bund-conduitd, prevenire, combatere. Cluj-Napoca: Ecou Transilvan, 2012.

31SOC, D. Prevenitor de plagiat. Cluj-Napoca: Ecou Transilvan, 2014.
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Parameterized value iteration for output reference model tracking of
a high order nonlinear aerodynamic system”

Timotei Lala and Mircea-Bogdan Radac, Member, IEEE

Abstract—  Linearly and nonlinearly parameterized
approximated value iteration (VI) approaches used for output
reference model (ORM) tracking control are proposed herein.
The ORM problem is of significant interest in practice since, by
selecting a linear ORM, the closed-loop control system is
indirectly feedback linearized and value iteration (VI) offers the
means to achieve this feedback linearization in a model-free
manner. We show that a linearly parameterized VI such as the
one used for linear systems is still effective for a nonlinear
complex process and on similar performance level with that of a
neural-network (NN)-based implementation that is more
complex and takes significantly more time to learn. While the
nonlinearly parameterized NN-based VI proves to be generally
more robust to parameters selection, to dataset size and to
exploration strategies. The case study is aimed at ORM
tracking of a nonlinear two inputs-two outputs aerodynamic
process as a representative high dimensional system.
Convergence analysis accounting for approximation errors in
the VI is also proposed.

[. INTRODUCTION

The output reference model (ORM) tracking problem is
of significant interest in practice, especially for nonlinear
systems control, since by selection of a linear ORM,
feedback linearization is enforced on the controlled process.
Then, the closed-loop control system can act linearly in a
wide range. Subsequently, linearized control systems are
then subjected to higher level learning schemes such as the
Iterative Learning Control ones, with practical implications
such as primitive-based learning [1].

Suitable ORM selection is not straightforward. It has to
be matched with the process bandwidth and with several
process nonlinearities such as, e.g., input and output
saturations. Additionally, dead-time and non-minimum-phase
(NMP) characters of the process cannot be compensated for
and must be reflected in the ORM. Apart from this
information that can be measured or inferred from working
experience with the process, avoiding knowledge of the
process’ state transition function (process dynamics) — the
most time consuming to identify and the most uncertain part
of the process — in designing high performance control is
very attractive in practice.

Reinforcement Learning (RL) has developed both from
the artificial intelligence (AI), and from classical control
theory [2]-[5], where it is better known as Approximate
(Adaptive, Neuro) Dynamic Programming (ADP). Certain
ADP variants can be used to ensure ORM tracking control

* T. Lala and M.-B. Radac are with the Politehnica University of
Timisoara, Department of Automation and Applied Informatics, Bd. V.
Parvan 2, 300223 Timisoara, Romania (phone: +40 256403240, fax: +40
256403214; e-mail: timotei.lala@student.upt.ro, mircea.radac@upt.ro.

978-1-7281-2803-0/19/$31.00 ©2019 IEEE

without knowing the state-space dynamics of the controlled
process, which is of high importance into the practice of
model-free and data-driven control schemes that are able to
compensate for poor modeling and uncertainty in the
process. Thus, model-free ADP only uses data collected
from the process called state transitions. While plenty of
mature ADP schemes already exist in the literature, tuning
such schemes requires significant experience. Although
successful stories on RL and ADP applied to large state-
action spaces are reported mainly with AI [6], in control
theory, most approaches use low-order processes as
representative case studies and mainly in linear quadratic
regulator (LQR)-like settings. While the reference input
tracking control problem has been tackled before for linear
time-invariant (LTI) processes, known as Linear Quadratic
Tracking (LQT) [7], [8], model-free ORM tracking for
nonlinear processes was rarely addressed [9], [10].

The iterative model-free approximate Value Iteration
(IMF-AVI) proposed in this work belongs to the family of
batch-fitted Q-learning schemes [11] also known to the ADP
community as action-dependent heuristic ~ dynamic
programming (ADHDP), popular and representative ADP
approaches owing to their simplicity and model-free
character. These schemes have been implemented in many
variants: online vs. offline, adaptive or batch, for
discrete/continuous states and actions, with/without function
approximators, such as Neural Networks (NNs).

Suitable exploration that covers well the state-action
space is not trivially ensured but it is critical to ADP control.
Randomly generated control input signals will almost surely
fail to guide the exploration in the entire state-action space,
at least not in a reasonable amount of time. Then, a priori
designed feedback controllers can be used under a variable
reference input serving to guide the exploration [9].
However, such input-output (IO) or input-state feedback
controllers were traditionally not to be designed without
using a process model, until the advent of data-driven model-
free controller design techniques that have appeared from the
field of control theory: Virtual Reference Feedback Tuning
(VRFT) [12], Tterative Feedback Tuning [13], data-driven
Iterative Learning Control [1], [14], Model Free (Adaptive)
Control [15], [16].

The case study deals with the challenging ORM tracking
control for a nonlinear real-world two-inputs two-outputs
aerodynamic process (TITOAP) having six natural states that
are extended with four additional ones according to the
proposed theory. The process uses aerodynamic thrust to
create vertical (pitch) and horizontal (azimuth) motion. It is
shown that IMF-AVI can be used to attain ORM tracking of
first order lag type, despite the high order of the
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multivariable process, and despite the pitch motion being
naturally oscillatory and the azimuth motion practically
behaving close to an integrator. The state transitions dataset
is collected under the guidance of an input-output (IO)
feedback controller designed using model-free VRFT. To the
best of authors’ knowledge, the ORM tracking context with
linear parameterizations was not studied before for high-
order nonlinear real-world processes. Moreover, theoretical
analysis shows convergence of the IMF-AVI while
accounting for approximation errors.

Section II formulates the ORM tracking control problem,
while Section III solves it using an IMF-AVI approach.
Section IV validates the approach on the TITOAP.

II. MODEL REFERENCE CONTROL FOR UNKNOWN
NONLINEAR PROCESSES

A. The Process

A discrete-time nonlinear unknown open-loop stable

minimum-phase (MP) state-space deterministic  strictly
causal process is defined as
P'{XM =f(x;,u,), (1)
Y =8(x,),
where k indexes the discrete time,

X, =[x, ..x,, " €eQ, cR" is the pn-dimensional state
vector, wu, =[u, ,...u,, | €Q, cR™ is the control input
signal, y, =[y, 1’m’ykﬁ]T €Q, cR” is the measurable
£f:Q,xQ, >Q, 1S

nonlinear system function continuously differentiable within
its domain, g:Q L —Q, is an wunknown nonlinear

continuously differentiable output function. Initial conditions
are not accounted for at this point. Let known Q,.Q, and

controlled output, an unknown

unknown )~ domains be compact convex. Equation (1) is a

general un-restrictive form for most controlled processes.
Two widely used data-driven assumptions are:

Al: (1) is fully state controllable with measurable states.
A2: (1) is input-to-state stable on known domain Q,xQ, -

Al and A2 are common to data-driven control, not
verifiable with unknown model (1), but derivable from
literature and from working experience with the process. If
above information is not deducible, the user can try process
control under the safety operating conditions managed by the
supervisory control. Input to state stability (42) is mandatory
if open-loop input-state samples are collected to be used for
learning state feedback control. 42 can be omitted if a
stabilizing state-fedback controller exists and it is used just
for input-state data collection.

B. ORM tracking problem formulation

Let the discrete-time known open-loop stable minimum-
phase (MP) state-space deterministic strictly causal ORM be

44

X =1"(x{,1), ,

Yi =g" (x)),

ORM :{ (2)
where x? =[x",...x!" 1" eQ, %" is the state vector of
the ORM, r, =[r, 1,,,,,rkp]T €eQ, R’ is the reference input
signal, y =[Y;T1:~~-:Y;TP]T eQ, Ry is the ORM’s output,
f":Q, xQ, ->Q, , g":Q, ->Q,

nonlinear mappings. Initial conditions are zero unless stated
otherwise. Note that r,y,,y; have size p for square

feedback CSs. If the ORM (2) is LTI it is always possible to
express the ORM as an 10 LTI transfer matrix yi =M(2)r,

are  known

where M(z) is commonly an asymptotically stable unit gain
rational transfer matrix and r, is the reference input that
drives both the feedback CS and the ORM. We introduce an

extended process comprising of the process (1) coupled with
the ORM (2). For this, the reference input r,_ is treated as a

set of measurable exogenous signals (possibly seen as
disturbance) that evolve as r_ =h"(r,), with known
nonlinear h” : R” — R™. h”(.) is as a generative model for
the reference input.

Consider next that the extended state-space model that

consists of (1), (2) and the state-space generative model of
the reference input signal is, in the most general form:

X4 f(x,,u,) 3)
X =|Xp |=| £ (X7, [=E(xXg,u0,),x; €Q 7
L hm(l‘k)

where x; is called the extended state vector. Note that the

extended state-space fulfils the Markov property. The ORM
tracking problem is defined in an optimal control framework.
Thus, the infinite horizon cost function (c.f.) to be minimized
starting with x  is [4]

81 (xE.0) = S V2 (xE) -y, (cF 00 = Sy e (w00 )
k=0 k=0

In (4), the discount 0<y<1 sets the controller’s horizon,
y <1 is usually used to guarantee learning convergence to

optimal control. Htz =+/x"x is the Euclidean norm of the
1 t E mE E 2 i
column veetor X, v, (x;,u,) =[y; (X)) =y, (X, :“k)Hz >0 18

the stage cost where measurable y  —depends via unknown

g() on x,,u, ((1) is strictly causal) and v, penalizes the
0eR™
admissible

deviation of y  ~ from the ORM’s output y7 .
state-feedback

def
controller [4] defined as u, = C(x},0), which used in (3)

parameterizes a nonlinear

makes all CS’s trajectories depend on @. Any stabilizing
controller sequence (or controller) rendering a finite c.f. is
called admissible. A finite §, holds if ¢ is a square-

summable sequence, ensured by an asymptotically stabilizing
controller if y=1 or by a stabilizing controller if y<1.
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$,,.(0) in (4) is the value function of using controller C(0).
The optimal controller u;, = C"(x;,0") minimizing (4) is
0 =argmin $,(x5,0). (%)

Nonlinear ORM tracking can be attempted, however, an
LTI ORM forces a very desirable indirect feedback CS
linearization, where the LTI CS’s behavior is well

extrapolated in a wide range [1]. Therefore, the ORM
tracking problem’s purpose herein, is to ensure ¢, ~0

when r, drives both the CS and the ORM.

As classical control guidelines, the process time delay and
non-minimum-phase (NMP) character should also be
contained in M(z). Still, M(z) ’s NMP zeroes render it non-

invertible and complicates the subsequent VRFT IO control
design [17], motivating the MP assumption on the process.
Depending on the learning scenario, the user may select a
piece-wise constant generative model for the reference input
signal such as r, =r,ora ramp-like model, a sine-like

model, etc. In all cases, the states of the generative model are
known, measurable and need to be introduced in the
extended state vector, to fulfil the Markov property of the
extended state-space model. For ORM tracking practical
applications, the CS’s outputs are required to track the
ORM’s outputs when both the ORM and the CS are driven
by the piece-wise constant reference input signal captured by
the generative model Y, =T This model will be used

herein for learning ORM tracking controllers.
III. SOLVING THE ORM TRACKING PROBLEM

For unknown extended process dynamics (3),
minimization of (4) will be attempted by an iterative model-
free approximate Value Iteration (IMF-AVI). A c.f. that
extends § . (x;) called the Q-function (or action-value

function) is first defined for each state-action pair. Let the Q-
function of acting as u, in state x; and then following the

control (policy) u . =C(x¥) be
®C(stuk) = {U(Xf’uk)+Y®C(Xf+1’c(xf+1))~ (6)

The optimal Q-function ®"(x?,u,) corresponding to the
optimal controller obeys Bellman’s optimality equation

0" (xf,u,)=min {Uxf ) +10" (xf, OO ) (D)
where the optimal controller and optimal Q-functions are
uj =C"(xf) =argmin ©°(xf,u,).0'(xf,u) =min ©“(xfu). @)
Then, for it follows that

$;/IR (xf) = min $MR (Xf,u)
$,,(x5)=0"(x",u) =C"(xF)). Implying that finding ©" is

equivalent to determining the optimal c.f. §7 .

The optimal Q-function and optimal controller can be
found using either Policy Iteration (Polt) or Value Iteration

45

(VI) strategies. For continuous state-action spaces, IMF-AVI
is one possible solution, using different linear and/or
nonlinear parameterizations for the Q-function and/or for the
controller. NNs are most widely used as nonlinearly
parameterized function approximators. As it is well-known,
VI alternates two steps: the Q-function estimate update step
and the controller improvement step. For example, linear

parameterizations of the Q-function allow analytic
calculation of the improved controller as in
C(x; m)=argmin O (x},u,,m), ©)

by directly minimizing ®°(x},u,,n) W.r.t. u,, where the
parameterization s is moved from the controller into the Q-
function. In these special case, it is possible to eliminate the
controller approximator and use only one for the Q-function
®. Then, given a dataset D of transition samples,
D ={(x;,u,,x: )}, k=1,N the IMF-AVI amounts to solving

the following optimization problem (OP) at each iteration
N ~
m,., = argmin ) (O . m) ~U(xf.u,) ~ 10, O ) (1)
k=1

which is a Bellman residual minimization problem where
the (usually separate) controller improvement step is now
embedded inside the OP (10).

: irati E T E
For a linear parameterization @(x/,u,,n)=®" (x;,u,)x

using a set of 1y, basis functions of the form

(I)T(Xf’uk):[(Dl(xfnuk)r"’q)nd,(Xfauk)]’ the least squares

solution to (10) is equivalent to solving the following
overdetermined linear system of equations w.r.t. m

" (x",u) Ut )+ 7@ (xE, C(xE ),

(1)

7rj+1 =

@7 (x5,u,) U uy) 7@ (x5, O ),

Starting with an initial parameter n, of the Q-function,

the IMF-AVI that allows explicit controller improvement
calculation as in (9), embeds both VI steps into solving (11).
Linearly parameterized IMF-AVI (LP-IMF-AVI) are
validated in the case study and compared to nonlinearly
parameterized IMF-AVI  (NP-IMF-AVI). IMF-AVI
convergence is next analyzed under approximation errors.

A. IMF-AVI convergence with approximation errors

The proposed iterative model-free VI-based Q-
learning Algorithm 1 consists of the next steps:
S1. Select an initial (not necessarily admissible) controller
C, and an initialization value @,(x”,u,)=0,v(x",u,) of
the Q-function. Initialize iteration index ; =1.
S2. Use the one step back-up equation for the Q-function

®j (Xf’uk) = U("f»“k) + Y®j-1 (Xli-l > Cj—l (Xli-l ) '

= min {U(x]u,) +70 . (X, W)

(12)

S3. Improve the controller using the equation
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(13)

Cj(xkE):argmliln ®j(xf,u)'

S4. Set j = j+1 and repeat steps S2, S3, until convergence.

Lemma 1. For an arbitrary sequence of controllers i}
define the VI-like update for extended c.f. g, as [18]

(14)

é’;jafl(XkE’uk) :U(stuk)+Y‘§j(xkE+17Kj(XkE+l))'
If ©,(x;,u,) =&, (x;{,u,) =0, then © (x/,u,) <& (x{,u,)-

Proof. For limited space, see [21].

Lemma 2. For the sequence ©,} from (12), under

controllability assumption A4/, it is valid that:

) 0<0,(x{,u,)<B(x;,u,) With B(x{,u,) an upper
bound.
2) If there exists a solution ®'(x/,u,) to (8), then

0<0,(x;,u,) <O (x{,u,) <B(X;,u,)-
Proof. For limited space, see [21].

Theorem 1. For the extended process (3) with c.f. (4), under
Al, A2, with the sequences {C,;} and {@i(xf ,u,)} generated

by the Q-learning A/gorithm 1, it is true that:

1) {0, (xZ,u,)} is a non-decreasing sequence for which
0,.,(x;,u,) =0 ,(x;,u,) holds, vj,v(x{,u,) and

2) lim C, =C’ and lim ©,(x;',u,) =0 (x{.u,) -

Proof. For limited space, see [21].

Comment 2. (12) is practically solved in the sense of
the OP (10) (either as a linear or nonlinear regression) using
a batch (dataset) of transition samples collected from the
process using any controller, i.e. in “off-policy” mode. While
the step (13) can be solved either as a regression or explicitly
analytically when the expression of ®,(x;,u,) allows it.

Moreover, (12) and (13) can be solved batch-wise either
online or offline. When the batch of transition samples is
updated each sample time, the VI-scheme becomes adaptive.

Comment—3-—Theorem 1 proves the VI-based learning

convergence of the sequence of  Q-functions
lig}o@j (x¥,u,)=0"(x*,u,) assuming that the true Q-

function parameterization is used. In practice, this is rarely
possible, such as, e.g. in the case of LTI systems. For general
nonlinear processes of type (1), different function
approximators are employed for the Q-function, most
commonly using NNs. Then the convergence of the VI Q-
learning scheme is to a suboptimal controller and to a
suboptimal Q-function, owing to the approximation errors. A
convergence proof of the learning scheme under
approximation errors is next shown and accounts for generic
parameterizations of the Q-function [19].

Let the IMF-AVI Algorithm 2 consists of the steps:

46

S1. Select an initial (not necessarily admissible) controller
50 and an initialization value (?)0 (xF,u,)=0,v(x",u,) of
the Q-function. Initialize iteration j=1.

S2. Use the update equation for the approximate Q-function

@j(xf’ u,) = U(x;,u,)+ Y@H (e 5,-71 Gl J; (X, uy) (15)

= min {U(x,u,) +70 (x5, W)} +35,.

S3. Improve the approximate controller using

(16)

C,(x}) =argmin ®, (x;,u)-
S4. Set j= j+1 and repeat steps S2, S3, until convergence.

Comment 4. In Algorithm 2, the sequences {5}_ (xf)} and
{@j(xf ,u,)} are approximations of the true sequences
{C,(x{)} and {®,(x;,u,)}- Since the true Q-function and

controller parameterizations are not known, (15) must be
solved in the sense of the OP (10) with respect to the
unknown (?)j, in order to minimize the residuals 8, at each

iteration. If the true parameterizations of the Q-function and
of the controller were known, then 8], =0 and the IMF-AVI

updates (15), (16) coincide with (12), (13), respectively.
Next, let the following assumption hold.

A3. There exist two positive scalar constants y, i such

that 0 <y <1<y <o, ensuring

min {YU(x;,u,) +70 1 (x5, w)} <O, (xf,u,) <

<min {FU,u,) 70 (xpw)}-

(17)

Comment 5. Inequalities from (17) account for nonzero
positive or negative residuals 8, i.e. for the approximation

errors in the Q-function, since @,(Xf ,u,) can over- or
under-estimate Hﬂn{U(le9uk)+yéj—l(xf+lﬁu)} in (15). VAT
can span large intervals (y close to 0 and i very large).
Hope is that, if 3 are close to 1 -meaning low

approximation errors-, then the entire IMF-AVI process
preserves §. ~0. In practice, this amounts to using high

performance approximators. For example, with NNs, adding
more layers and more neurons, enhances the approximation
capability and theoretically reduces the residuals in (15).

Theorem 2. Let the sequences {C (x;)} and {© (x/,u,)}
evolve as in (15), (16), the sequences {C, (x;)} and
{©,(x;,u,)} (12),  (13).
0,(x",u,)=0,(x",u,)=0,v(x",u,) and let 43 hold. Then

(18)

evolve as in Initialize

yO,(x;,u,) <O (x,u,) <YO ,(x;,u,)

Proof. For limited space, see [21].
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Comment 6. Theorem 2 shows that the trajectory of
{éj(xf’uk)} closely follows that of {G/(Xf’uk)} in a
bandwidth set by AR It does not ensure that {@j(xf Ju)}
converges to a steady-state value, but in the worst case, it
oscillates around @"(x” u,)= 1{1}0@,~ (x%,u,) in a band that
can be made arbitrarily small by using powerful
approximators. By minimizing over u, both sides of (17),

similar conclusions result for the controller sequence
{5/, (xF)y that closely follows {C,(x)}-

IV. VALIDATION CASE STUDY ON THE TITOAP

The ORM tracking problem on the more challenging
TITOAP position control by Inteco [20] is solved. The
azimuth motion acts as an integrator while the pitch
positioning is affected differently by the gravity for the
up/down motions. Coupling between the channels is present.
The process model is [20]:

o, = (sat(U,) - M, (®,))/2.7-107,
K, =(0.216F,(»,)cosa, —0.058Q, +0.0178sat(U,)cos o, ),
Q, =K, /(0.0238-cos> o, +3-107)
o, =9,
o, = (sat(U,) - M (®,))/1.63-107%,
0.2F,(0,)—0.0127€2, —0.0935sin o, —
=$ 9.28-10°Q, |o,|+4.17-10 7 sat(U,) - 0.05cos o, |,
T (-0.02192 sin o, cos e, —0.093sin o, +0.05

0)

v

a,=Q,

where sqt() is the saturation function on [-11], U, =u, is
the azimuth motion control input, U, =u, is the vertical
motion control input, ¢ , (rad) =y, e[-n, 7] is the azimuth
angle, o (rad)=y, e[-n/2,m/2] is the pitch angle, other
states being described in [20], [22]. Nonlinear maps
M, (,).F, (®,),M, (®,),F, (»,) Wwere polynomially fitted
from experimental data for o ,®, € (—4000;4000) [20].

An equivalent MP discrete-time model of relative degree
one at sampling time T.=0.1s obtianed from (1) is suitable

data

_ T _gpb _ T _ g2
X, =[@, 4,82 4,0, ,0,,,Q, 0,1 €eRs w, =[u, ,u,] eR-

for input-state collection where

The process’s dynamics will not be used for learning ORM
tracking in the following.

A. Initial linear MIMO controller with model-free VRFT
An initial model-free multivariable 2x2 1O controller is
first designed using model-free VRFT, as previously
described in [9]. This controller will be used afterwards for
input-state transition samples collection. The ORM to be
tracked is M(z) =diag(M,(2), M,(z)) Where M, (z),M,(z)
are the discrete-time counterparts of
M, (s)=M,(s)=1/3s +1) obtained for a sampling period of
T, =0.1s. The VRFT prefilter is chosen as L(z) =M(z). A

(19)

47

pseudo-random binary signal of amplitude [—0.1;0.1] is used

on both inputs y, , to open-loop excite the pitch and

Ui
azimuth dynamics. The IO data ..y, i1s collected with
low-amplitude zero-mean inputs Uty > O maintain the
process linearity around the mechanical equilibrium, such
that to fit the linear VRFT design framework. The linear
VREFT output feedback error diagonal controller is

C(2:0) = diag (P, (2), Py(2))/[(1-z ") (20)

B,(2)=2.9341-5.8689z"" +3.9303z° -0.9173z~ - 0.0777z %,
B, (2)=0.6228-1.1540z"' +0.5467z ",

where the parameter vector @ groups all the coefficients of
P,(2),P,(2)- The output feedback controller (20) processes
the feedback control error e =r -y, in closed loop.
Nonlinear (in particular, linear) state-feedback controllers
can also be found by VRFT as shown in [23] to serve as
initializations for the IMF-AVI. Should this not be
mandatory, 10 feedback controllers should be first designed
since they are very data-efficient.

B. Collecting more input-state-output data

ORM tracking is next improved to make the closed loop
CS better match the ORM M(z) . With controller (20) used
in closed-loop to stabilize the process, input-state-output
data is collected for 7000 s. The reference inputs with
amplitudes 1, €[-2;217, , e[-1.4;1.1] model successive
steps that switch their amplitudes uniformly random at 17 s
and 25 s, respectively. On the outputs 4, , of both

,(z), an additive noise is added at every

Uy

controllers C,(2).C,

2" sample as an uniform random number in [-1.6;1.6]
forc, (z) and in [-1.7;1.7] for (C,(z)- These additive
disturbances provide an appropriate exploration, visiting
many combinations of input-states-outputs. The computed
controller outputs are saturated to sart(u,,),sat(u, ,) [-L1]

after which they are sent to the process. The reference inputs
drive the ORM:

V1oV,

X, = 0.9672x], +0.03278r,,

X, =0.9672x]", +0.03278r, , @D

yi :[y;cn,l yZz]T =[x xl':fz]T~

The ORM’s states (also ORM’s outputs) are collected
along with the process’ states and controls, in order to build
the extended process state (3). Let this extended state be:

X; = (X X0 T T (Xk )T]T eR” 22)
N AN

o"

()"

Essentially, the collected xE

D= {(xlﬁaulaXf)v--’(Xfoooo=u7oooo’xfoom)}
N =70000, used for the IMF-AVI implementation. After
collection, an important processing step is performed related

and y . builds the transitions

dataset for
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to data normalization. Some states of the process will be
replaced by their scaled version. Thus, the transformed

process state is ik:[a)h,k:@h’k/7200,ﬁh,k:Qh!k/zs,ah‘k,

B, =0,,/350Q,, =0 /40,0,,] eR®. The reference
inputs, the ORM states and the saturated process inputs
already have values around [-1;1]. The normalized states will
finally serve for state feedback.

Note that the reference input signals used as

Ti2
sequences of constant amplitude steps for ensuring good
exploration do not have a generative model that obeys the
Markov assumption. To avoid this problem, the piece-wise
constant reference input generative model r,_ =r, is
employed by eliminating from the dataset D all the
transition samples that correspond to switching reference
inputs instants (i.e., when at least one of FersTin switches).

C. Learning control with linearly parameterized IMF-AVI

Details of the linearly parameterized IMF-AVI (LP-IMF-
AVI) applied to the ORM tracking control problem are next
provided. The stage cost is defined
’U(xf) =V, _y,':’l)2 +(,, _y/;"z)z and the discount factor in
$,, 1S v=0.95. The Q-function © is linearly parameterized
using the basis functions

T, E m2 _m 2 2 2 2 2
@, (X0 ) =[x 5% Ty s Xpg Uiy Uiy »

(23)
X X X[ Fieees X Uy Xy Py o Uy Uy ] € R
The controller improvement step at each iteration of the
LP-IMF-AVI explicitly minimizes the Q-function. Solving

the linear system of equations resulting after setting the
derivative of ®(xf,u ) Wrt o u, equal to zero, it results

* -1
o | Uk ~ 27, . F(xE
o= M =Clmy=| i kE) ’
Ui2 s 2T | Fy(xy)

T

i (Xf) ST oolin t T30l T 4l T T a0l s T 56X + (24)
T Xk T 6% T 1% 4 T 70X s T T 765 65
1 (X/f) STl T 3al o T T ol T T 5ol n T8, 57X, +
T 6%k T T esXis T 700X g T, 95X s + T 57X 6
The improved controller is embedded in the system (11)

of 70000 linear equations with 78 unknowns corresponding
to the parameters of n., e R, This linear system (11) is

solved as a least squares regression with each of the 50
iterations of the LP-IMF-AVI. The practical convergence

results are shown in Fig. 1 for an -, 1H and for the ORM
2

in terms of a normalized c.f.
measured for

tracking performance
oo =1/ N - (]| Via _ijl I, +1I Vi _y:fz )
N =2000 samples over 200 s in the test scenario displayed
in Fig. 2. The test scenario has of a sequence of piece-wise
constant reference inputs that switch at different moments of
time for the azimuth and pitch ( Vi and Via ), to illustrate

the coupling behavior between the two control channels and

the extent by which the learned controller manages to
‘ achieve the decoupled behavior requested by the ORM.

T
e 2
|
£ ot : ‘ ; ;
0 10 20 30 40 50
iteration index j
— 10°
= 102
S
S
10 ! ’ | |
0 10 20 30 40 50

iteration index j

Fig. 1. The LP-IMF-AVI convergence-on-FIFOAP:

The best LP-IMF-AVI controller found over the 50
iterations results in J,., =0.0017 (tracking results in black

lines in Fig. 2), which is more than 6 times smaller than the
tracking performance recorded with the VRFT controller
used for transition samples collection, for which
J_=0.0103 (tracking results in green lines in Fig. 2).

test

D. Learning control with nonlinearly parameterized IMF-
AVI using NNs

The previous LP-IMF-AVI for ORM tracking control
learning scheme is challenged by a nonlinearly
parameterized IMF-AVI (NP-IMF-AVI) implementation
with NNs. In this case, two NNs are needed to approximate
the Q-function and the controller. The procedure follows the
NP-IMF-AVI implementation described in [9]; it uses Q-
function estimate minimization by enumerating discrete
actions [23], [24]. The trained NN controller still outputs
continuous actions. The same dataset of transition samples is
used as was previously used for the LP-IMF-AVI. The
controller NN (C-NN) is a 10-3-2 (10 inputs because
x7 eR'’, 3 neurons in the hidden layer and 2 outputs for

U, U, 2) with tanh activation function in the hidden layer

and linear output activation. The Q-function NN (Q-NN) is
12-25-1 with the same parameters as C-NN. Initial weights
of both NNs are uniform random numbers with zero-mean
and variance 0.3. Both NNs are to be trained using scaled
conjugate gradient for maximum 500 epochs. The available
dataset is randomly divided into training (80%) and
validation data (20%). Early stopping during training is
enforced after 10 increases of the training c.f. mean sum of
squared errors (MSSE)) evaluated on the validation data.
The ORM tracking with the best NP-IMF-AVI controller
producing the lowest J,, =0.0017 is shown in Fig. 2.

With the best ORM tracking not better than that with the
LP-IMF-AVI controllers, extensive reruns of the NP-IMF-
AVI convergent process under different dataset sizes,
different exploration strategies and different Q-NN and C-
NN architectures always produced converging learning
process. The LP-IMF-AVI convergence is more sensitive to
the mentioned aspects. The main reason appears to be the
under-parameterization of the Q-function, hence the
quadratic form may be too limited with more nonlinear
processes. This explains for a violation of the low
approximation error assumptions of Theorem 2. Both LP-
IMF-AVI and NP-IMF-AVI well linearize the CS to ensure
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ORM tracking [25], recommending further application of
data-driven ILC [26] for primitive-based learning [27].

_1 1 L 1
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sample index k

Y15 Y
'
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0 500 1000 1500 2000
sample index k
L2 . :
B -
2 1 L I
0 500 1000 1500 2000
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553( 1r —— — b
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0 500 1000 . 1500 2000
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g. 2. The IMF-AVI convergence on TITOAP: iy, (red); Uy > Uy
Vi Via for LP-IMF-AVI (black), for NP-IMF-AVI with NNs (blue), for

the initial VRFT controller used for transitions collection (green).
V. CONCLUSION

This paper proves an IMF-AVI ADP scheme for the
challenging ORM tracking of a high-order real-world
complex nonlinear process with unknown. Learning high
performance state-feedback control under the model-free
mechanism offered by ADP builds upon the input-states-
outputs transition samples collected with a model-free linear
output feedback controller designed using VRET.
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